Design and Studies of Novel 5-Substituted Alkynylpyrimidine Nucleosides as Potent Inhibitors of Mycobacteria
作者:Dinesh Rai、Monika Johar、Tracey Manning、B. Agrawal、Dennis Y. Kunimoto、Rakesh Kumar
DOI:10.1021/jm058167w
日期:2005.11.1
We herein report a new category of 5-substituted pyrimidine nucleosides as potent inhibitors of mycobacteria. A series of 5-alkynyl derivatives of 2'-deoxyuridine (1-8), 2'-deoxycytidine (9-14), uridine (15-17), and 2'-O-methyluridine (18, 19) were synthesized and evaluated for their antimycobacterial activity in vitro. 5-Decynyl, 5-dodecynyl, and 5-tetradecynyl derivatives showed the highest antimycobacterial potency against M. bovis and M. avium, with the 2'-deoxyribose derivatives being more effective than the ribose analogues. Nucleosides bearing short alkynyl side chains 5-ethynyl, 5-propynyl, 5-pentynyl, and 5-heptynyl were mostly not inhibitory. Incorporation of a phenylethynyl function at the 5-position diminished the antimicrobial effect. Furthermore, related bicyclic analogues (20-24) were devoid of antimycobacterial activity, indicating that an acyclic side chain at the C-5 position of the pyrimidine ring is essential for potent activity. Compounds 1-17 were synthesized by the Pd-catalyzed coupling reactions of respective alkynes with 5-iodo derivatives of 2'-deoxyuridine, 2'-deoxycytidine, and uridine. Intramolecular cyclization of 1 and 3-6 in the presence of Cu afforded the corresponding bicyclic compounds 20-24. The investigated nucleosides are recognized here for the first time to be potent inhibitors of mycobacteria. This class of compounds could be of interest for lead optimization as antimycobacterial agents.