Electrosynthesis and screening of novel 1,3,4-oxadiazoles as potent and selective antifungal agents
作者:Sushma Singh、Laxmi Kant Sharma、Apoorv Saraswat、Ibadur R. Siddiqui、Harbans K. Kehri、Rana K. Pal Singh
DOI:10.1039/c3ra21904f
日期:——
The electrochemical oxidation of aldehyde-N-aroylhydrazone has been studied in the presence of NaClO4 as supporting electrolyte in MeOH solution using cyclic voltammetry and controlled potential electrolysis. The results indicate that intramolecular cyclization of aldehyde-N-aroylhydrazone has been successfully performed at a platinum electrode in an undivided cell with good yields of the corresponding 1,3,4-oxadiazoles at ambient conditions. The reaction products were characterized by spectroscopic methods and a mechanism was deduced from voltammetry studies. The antifungal activity of the synthesized compounds was evaluated on Fusarium oxysporum, Alternaria solani, Candida albicans and Aspergillus niger. The results revealed that all the synthesized compounds have significant antifungal activity against the tested fungi. Among the synthesized derivatives 7b, 7d, 7g, 7h, 7i, 7j and 7r were found to be the most effective antifungal compounds.
在甲醇溶液中,以NaClO4为支持电解质,通过循环伏安法和控制电位电解法研究了醛-N-芳酰腙的电化学氧化反应。结果表明,在室温条件下,在不分隔的铂电极反应池中,醛-N-芳酰腙成功进行了分子内环化反应,得到了较高产率的相应1,3,4-噁二唑类化合物。通过光谱方法对反应产物进行了表征,并从伏安法研究中推导出反应机理。对合成化合物进行了对 Fusarium oxysporum、Alternaria solani、Candida albicans 和 Aspergillus niger 的抗真菌活性评估。结果显示,所有合成化合物对测试的真菌均显示出显著的抗真菌活性。其中,合成衍生物 7b、7d、7g、7h、7i、7j 和 7r 被发现是最高效的抗真菌化合物。