Conformational studies by dynamic NMR. 50. Atropisomerism in hindered naphthyl sulfoxides: structure, stereodynamics, and chiral resolution
作者:D. Casarini、E. Foresti、F. Gasparrini、L. Lunazzi、D. Misiti、D. Macciantelli、C. Villani
DOI:10.1021/jo00073a028
日期:1993.10
Barriers for the EZ interconversion of atropisomers of 1-naphthyl sulfoxides (ArSOR) having a methyl group at position 2 of the naphthalene moiety were measured by variable-temperature NMR. Their values were found to cover the range 10.6-18.4 kcal mol-1, the extreme values corresponding to derivatives 1 (R = Me) and 4 (R = Bu(t)), respectively. NOE and LIS measurements indicated that the Z atropisomer is more stable than the E but that the absence of the methyl group at position 2 of the naphthalene moiety reverses this trend, rendering E more stable than Z. Solid-state NMR and X-ray diffraction of 4 established that only the more stable atropisomer (Z) is present in the crystalline state. Molecular mechanics calculations suggest that the Z,E interconversion process might occur by a rotation pathway having an opposite direction in the case of the more hindered derivatives 3 and 4 (R = Pr(i) and Bu(t), respectively) with respect to the less hindered 1 and 2 (R = Me and Et, respectively). The enantiomers, which are due to the presence of the asymmetric sulfur atom, were resolved on a chiral stationary phase (DACH-DNB) having an SS configuration. Asymmetric oxidation reactions were employed to assign the absolute R configuration to the more retained enantiomers of alkyl aryl sulfoxides. The opposite trend (S being retained longer) was observed for diaryl sulfoxides such as 5 (R = Ph). In the case of the derivative with the largest interconversion barrier, sulfoxide 4, it was also possible to resolve (at -35-degrees-C) the two enantiomeric forms and their associated atropisomers. The use of on-line CD detection and the knowledge of the NMR assignments allowed us to unambiguously assign the elution order of the four species as ES, ER, ZS, ZR.