Terminal functionalized thiourea-containing dipeptides as multidrug-resistance reversers that target 20S proteasome and cell proliferation
摘要:
A series of inhibitors of 20S proteasome based on terminal functionalized dipeptide derivatives containing the thiourea moiety were synthesized and evaluated for inhibition of 20S proteasome and the effects of multidrug-resistance reversers. These compounds exhibited significant selectivity to the 05 subunit of the human 20S proteasome with IC50 values at submicromolar concentrations. A docking study of the most active compound 6i revealed key interactions between 6i and the active site of the 20S proteasome in which the thiourea moiety and a nitro group were important for improving activity. In particular, compound 6i appeared to be the most potent compound against the NCI-H460 cell line, and displayed similar efficiency in drug-sensitive versus drug-resistant cancer cell lines, at least partly, by inhibition of the activity of 20S proteasome and induce apoptosis. In addition, 6i-induced apoptosis was significantly facilitated in NCI-H460/DOX cells that had been pretreated with inhibitors of P-gp. Mechanistically, compound 6i might trigger apoptotic signalling pathway. Thus, we conclude that dipeptide derivatives containing the thiourea moiety may be the potential inhibitors of proteasome with the ability to reverse multidrug resistance. (C) 2017 Elsevier Masson SAS. All rights reserved.
Terminal functionalized thiourea-containing dipeptides as multidrug-resistance reversers that target 20S proteasome and cell proliferation
摘要:
A series of inhibitors of 20S proteasome based on terminal functionalized dipeptide derivatives containing the thiourea moiety were synthesized and evaluated for inhibition of 20S proteasome and the effects of multidrug-resistance reversers. These compounds exhibited significant selectivity to the 05 subunit of the human 20S proteasome with IC50 values at submicromolar concentrations. A docking study of the most active compound 6i revealed key interactions between 6i and the active site of the 20S proteasome in which the thiourea moiety and a nitro group were important for improving activity. In particular, compound 6i appeared to be the most potent compound against the NCI-H460 cell line, and displayed similar efficiency in drug-sensitive versus drug-resistant cancer cell lines, at least partly, by inhibition of the activity of 20S proteasome and induce apoptosis. In addition, 6i-induced apoptosis was significantly facilitated in NCI-H460/DOX cells that had been pretreated with inhibitors of P-gp. Mechanistically, compound 6i might trigger apoptotic signalling pathway. Thus, we conclude that dipeptide derivatives containing the thiourea moiety may be the potential inhibitors of proteasome with the ability to reverse multidrug resistance. (C) 2017 Elsevier Masson SAS. All rights reserved.
This invention relates to novel amide derivatives and salts thereof. More particularly, it relates to novel amide derivatives and salts thereof which act as a ROCK inhibitor, to a pharmaceutical composition comprising the same and to a method of using the same therapeutically in the treatment and/or prevention of ROCK-related disease.
This invention relates to novel amide derivatives and salts thereof. More particularly, it relates to novel amide derivatives and salts thereof which act as a ROCK inhibitor, to a pharmaceutical composition comprising the same and to a method of using the same therapeutically in the treatment and/or prevention of ROCK-related disease.
[EN] This invention relates to novel amide derivatives and salts thereof. More particularly, it relates to novel amide derivatives and salts thereof which act as a ROCK inhibitor, to a pharmaceutical composition comprising the same and to a method of using the same therapeutically in the treatment and/or prevention of ROCK-related disease. [FR] La présente invention concerne de nouveaux dérivés d'amide et les sels de ces derniers et concerne plus particulièrement de nouveaux dérivés d'amide ainsi que leurs sels qui agissent en tant qu'inhibiteur de ROCK, une composition pharmaceutique comprenant ces derniers et une méthode d'utilisation de cette dernière à des fins thérapeutiques dans le traitement et/ou la prévention des maladies associées à ROCK.