摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Methyl 2-[[3-[[2-[4-[(2-methylphenyl)carbamoylamino]phenyl]acetyl]amino]benzoyl]amino]acetate | 1027261-92-2

中文名称
——
中文别名
——
英文名称
Methyl 2-[[3-[[2-[4-[(2-methylphenyl)carbamoylamino]phenyl]acetyl]amino]benzoyl]amino]acetate
英文别名
——
Methyl 2-[[3-[[2-[4-[(2-methylphenyl)carbamoylamino]phenyl]acetyl]amino]benzoyl]amino]acetate化学式
CAS
1027261-92-2
化学式
C26H26N4O5
mdl
——
分子量
474.516
InChiKey
ZUHWEOOGYVXWHZ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.8
  • 重原子数:
    35
  • 可旋转键数:
    9
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.15
  • 拓扑面积:
    126
  • 氢给体数:
    4
  • 氢受体数:
    5

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    Methyl 2-[[3-[[2-[4-[(2-methylphenyl)carbamoylamino]phenyl]acetyl]amino]benzoyl]amino]acetate 在 lithium hydroxide 作用下, 以 N,N-二甲基甲酰胺 为溶剂, 反应 2.0h, 生成 (3-{2-[4-(3-o-Tolyl-ureido)-phenyl]-acetylamino}-benzoylamino)-acetic acid
    参考文献:
    名称:
    Identification of Potent and Novel α4β1 Antagonists Using in Silico Screening
    摘要:
    The antigen alpha4beta1 (very late antigen-4, VLA-4) plays an important role in the migration of white blood cells to sites of inflammation. It has been implicated in the pathology of a variety of diseases including asthma, multiple sclerosis, and rheumatoid arthritis. We describe a series of potent inhibitors of alpha4beta1 that were discovered using computational screening for replacements of the peptide region of an existing tetrapeptide-based alpha4beta1 inhibitor (1; 4-[N'-(2-methylphenyl)-ureido]phenylacetyl-Leu-Asp-Val) derived from fibronectin. The search query was constructed using a model of 1 that was based upon the X-ray conformation of the related integrin-binding region of vascular cell adhesion molecule-1 (VCAM-1). The 3D search query consisted of the N-terminal cap and the carboxyl side chain of 1 because, upon the basis of existing structure-activity data on this series, these were known to be critical for high-affinity binding to alpha4beta1. The computational screen identified 12 reagents from a virtual library of 8624 molecules as satisfying the model and our synthetic filters. All of the synthesized compounds tested inhibit alpha4beta1 association with VCAM-1, with the most potent compound having an IC50 of 1 nM, comparable to the starting compound. Using CATALYST, a 3D QSAR was generated that rationalizes the variation in activities of these alpha4beta1 antagonists. The most potent compound was evaluated in a sheep model of asthma, and a 30 mg nebulized dose was able to inhibit early and late airway responses in allergic sheep following antigen challenge and prevented the development of nonspecific airway hyperresponsiveness to carbachol. Our results demonstrate that it is possible to rapidly identify nonpeptidic replacements of integrin peptide antagonists, This approach should be useful in identification of nonpeptidic alpha4beta1 inhibitors with improved pharmacokinetic properties relative to their peptidic counterparts.
    DOI:
    10.1021/jm020054e
  • 作为产物:
    描述:
    (3-nitro-benzoylamino)-acetic acid methyl ester 在 palladium on activated charcoal 氢气N,N-二异丙基乙胺 、 N-[(dimethylamino)-3-oxo-1H-1,2,3-triazolo[4,5-b]pyridin-1-yl-methylene]-N-methylmethanaminium hexafluorophosphate 作用下, 以 甲醇N,N-二甲基甲酰胺 为溶剂, 反应 16.0h, 生成 Methyl 2-[[3-[[2-[4-[(2-methylphenyl)carbamoylamino]phenyl]acetyl]amino]benzoyl]amino]acetate
    参考文献:
    名称:
    Identification of Potent and Novel α4β1 Antagonists Using in Silico Screening
    摘要:
    The antigen alpha4beta1 (very late antigen-4, VLA-4) plays an important role in the migration of white blood cells to sites of inflammation. It has been implicated in the pathology of a variety of diseases including asthma, multiple sclerosis, and rheumatoid arthritis. We describe a series of potent inhibitors of alpha4beta1 that were discovered using computational screening for replacements of the peptide region of an existing tetrapeptide-based alpha4beta1 inhibitor (1; 4-[N'-(2-methylphenyl)-ureido]phenylacetyl-Leu-Asp-Val) derived from fibronectin. The search query was constructed using a model of 1 that was based upon the X-ray conformation of the related integrin-binding region of vascular cell adhesion molecule-1 (VCAM-1). The 3D search query consisted of the N-terminal cap and the carboxyl side chain of 1 because, upon the basis of existing structure-activity data on this series, these were known to be critical for high-affinity binding to alpha4beta1. The computational screen identified 12 reagents from a virtual library of 8624 molecules as satisfying the model and our synthetic filters. All of the synthesized compounds tested inhibit alpha4beta1 association with VCAM-1, with the most potent compound having an IC50 of 1 nM, comparable to the starting compound. Using CATALYST, a 3D QSAR was generated that rationalizes the variation in activities of these alpha4beta1 antagonists. The most potent compound was evaluated in a sheep model of asthma, and a 30 mg nebulized dose was able to inhibit early and late airway responses in allergic sheep following antigen challenge and prevented the development of nonspecific airway hyperresponsiveness to carbachol. Our results demonstrate that it is possible to rapidly identify nonpeptidic replacements of integrin peptide antagonists, This approach should be useful in identification of nonpeptidic alpha4beta1 inhibitors with improved pharmacokinetic properties relative to their peptidic counterparts.
    DOI:
    10.1021/jm020054e
点击查看最新优质反应信息

文献信息

  • Identification of Potent and Novel α4β1 Antagonists Using in Silico Screening
    作者:Juswinder Singh、Herman van Vlijmen、Yusheng Liao、Wen-Cherng Lee、Mark Cornebise、Mary Harris、I-hsiang Shu、Alan Gill、Julio H. Cuervo、William M. Abraham、Steven P. Adams
    DOI:10.1021/jm020054e
    日期:2002.7.1
    The antigen alpha4beta1 (very late antigen-4, VLA-4) plays an important role in the migration of white blood cells to sites of inflammation. It has been implicated in the pathology of a variety of diseases including asthma, multiple sclerosis, and rheumatoid arthritis. We describe a series of potent inhibitors of alpha4beta1 that were discovered using computational screening for replacements of the peptide region of an existing tetrapeptide-based alpha4beta1 inhibitor (1; 4-[N'-(2-methylphenyl)-ureido]phenylacetyl-Leu-Asp-Val) derived from fibronectin. The search query was constructed using a model of 1 that was based upon the X-ray conformation of the related integrin-binding region of vascular cell adhesion molecule-1 (VCAM-1). The 3D search query consisted of the N-terminal cap and the carboxyl side chain of 1 because, upon the basis of existing structure-activity data on this series, these were known to be critical for high-affinity binding to alpha4beta1. The computational screen identified 12 reagents from a virtual library of 8624 molecules as satisfying the model and our synthetic filters. All of the synthesized compounds tested inhibit alpha4beta1 association with VCAM-1, with the most potent compound having an IC50 of 1 nM, comparable to the starting compound. Using CATALYST, a 3D QSAR was generated that rationalizes the variation in activities of these alpha4beta1 antagonists. The most potent compound was evaluated in a sheep model of asthma, and a 30 mg nebulized dose was able to inhibit early and late airway responses in allergic sheep following antigen challenge and prevented the development of nonspecific airway hyperresponsiveness to carbachol. Our results demonstrate that it is possible to rapidly identify nonpeptidic replacements of integrin peptide antagonists, This approach should be useful in identification of nonpeptidic alpha4beta1 inhibitors with improved pharmacokinetic properties relative to their peptidic counterparts.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐