摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-(1H-benzimidazol-2-ylmethyl)-2-(4-tert-butylphenoxy)acetamide | 728887-24-9

中文名称
——
中文别名
——
英文名称
N-(1H-benzimidazol-2-ylmethyl)-2-(4-tert-butylphenoxy)acetamide
英文别名
——
N-(1H-benzimidazol-2-ylmethyl)-2-(4-tert-butylphenoxy)acetamide化学式
CAS
728887-24-9
化学式
C20H23N3O2
mdl
MFCD06017916
分子量
337.422
InChiKey
GEVAOQWTCOQCJL-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4
  • 重原子数:
    25
  • 可旋转键数:
    6
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.3
  • 拓扑面积:
    67
  • 氢给体数:
    2
  • 氢受体数:
    3

反应信息

  • 作为产物:
    描述:
    (1H-苯并咪唑-2-亚甲基)胺4-叔-丁基苯氧基乙酸1-羟基苯并三唑盐酸-N-乙基-Nˊ-(3-二甲氨基丙基)碳二亚胺三乙胺 作用下, 以 二氯甲烷 为溶剂, 以74%的产率得到N-(1H-benzimidazol-2-ylmethyl)-2-(4-tert-butylphenoxy)acetamide
    参考文献:
    名称:
    Experimental and Computational Studies of Selective Recognition of Hg2+ by Amide Linked Lower Rim 1,3-Dibenzimidazole Derivative of Calix[4]arene: Species Characterization in Solution and that in the Isolated Complex, Including the Delineation of the Nanostructures
    摘要:
    Amide linked lower rim 1,3-dibenzimidazole derivative of calix[4]arene, L has been shown to be sensitive and selective to Hg2+ in aqueous acetonitrile solution based on fluorescence spectroscopy, and the stoichiometry of the complexed species has been found to be 1:1. The selectivity of L toward Hg2+ has been shown among 11 M2+ ions, viz., Mn2+, Fe2+, CO2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Ph2+, Ca2+, and Mg2+ studied, including those of the mercury group and none of these ions impede the recognition of Hg2+ by L. Role of the solvent on the recognition of Hg2+ has been demonstrated. The role of calix[4]arene platform and the benzimidazole moieties in the recognition of Hg2+ by L has been delineated upon performing such studies with five different molecules of relevance as reference molecular systems. The binding cores formed by the receptor L and the reference compounds have been established based on the single crystal XRD structures, and the preferential metal ion binding cores have been discussed. The binding, of Hg2+ with L has been further established based on H-1 and C-13 NMR, ESI MS, absorption, and fluorescence lifetime measurements. Some of these techniques have been used to establish the stoichiometry of the species formed. The complex species formed between L and Hg2+ have been isolated and characterized and found to be 1:1 species even in the isolated complex. Whereas transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) provided the nanostructural behavior of L, the TEM and SEM demonstrated that the mercury complex has different characteristics when compared to L. The TEM, SEM, and powder XRD studies revealed that whereas L is crystalline, that of the mercury complex is not, perhaps a reason for not being able to obtain single crystals of the complex. Binding characteristics of Hg2+ toward L have been established based on the DFT computational calculations.
    DOI:
    10.1021/jo800073g
点击查看最新优质反应信息

文献信息

  • Experimental and Computational Studies of Selective Recognition of Hg<sup>2+</sup> by Amide Linked Lower Rim 1,3-Dibenzimidazole Derivative of Calix[4]arene: Species Characterization in Solution and that in the Isolated Complex, Including the Delineation of the Nanostructures
    作者:Roymon Joseph、Balaji Ramanujam、Amitabha Acharya、Anupam Khutia、Chebrolu P. Rao
    DOI:10.1021/jo800073g
    日期:2008.8.1
    Amide linked lower rim 1,3-dibenzimidazole derivative of calix[4]arene, L has been shown to be sensitive and selective to Hg2+ in aqueous acetonitrile solution based on fluorescence spectroscopy, and the stoichiometry of the complexed species has been found to be 1:1. The selectivity of L toward Hg2+ has been shown among 11 M2+ ions, viz., Mn2+, Fe2+, CO2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Ph2+, Ca2+, and Mg2+ studied, including those of the mercury group and none of these ions impede the recognition of Hg2+ by L. Role of the solvent on the recognition of Hg2+ has been demonstrated. The role of calix[4]arene platform and the benzimidazole moieties in the recognition of Hg2+ by L has been delineated upon performing such studies with five different molecules of relevance as reference molecular systems. The binding cores formed by the receptor L and the reference compounds have been established based on the single crystal XRD structures, and the preferential metal ion binding cores have been discussed. The binding, of Hg2+ with L has been further established based on H-1 and C-13 NMR, ESI MS, absorption, and fluorescence lifetime measurements. Some of these techniques have been used to establish the stoichiometry of the species formed. The complex species formed between L and Hg2+ have been isolated and characterized and found to be 1:1 species even in the isolated complex. Whereas transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) provided the nanostructural behavior of L, the TEM and SEM demonstrated that the mercury complex has different characteristics when compared to L. The TEM, SEM, and powder XRD studies revealed that whereas L is crystalline, that of the mercury complex is not, perhaps a reason for not being able to obtain single crystals of the complex. Binding characteristics of Hg2+ toward L have been established based on the DFT computational calculations.
查看更多