摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-[2-(3,4-dicyanophenyl)ethynyl]benzaldehyde | 254902-82-4

中文名称
——
中文别名
——
英文名称
4-[2-(3,4-dicyanophenyl)ethynyl]benzaldehyde
英文别名
4-[2-(4-Formylphenyl)ethynyl]benzene-1,2-dicarbonitrile
4-[2-(3,4-dicyanophenyl)ethynyl]benzaldehyde化学式
CAS
254902-82-4
化学式
C17H8N2O
mdl
——
分子量
256.263
InChiKey
LAWZNRGLDJUEEY-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.8
  • 重原子数:
    20
  • 可旋转键数:
    3
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    64.6
  • 氢给体数:
    0
  • 氢受体数:
    3

反应信息

  • 作为反应物:
    描述:
    lanthanide(III)chloride heptahydrate 、 4-[2-(3,4-dicyanophenyl)ethynyl]benzaldehyde1,8-二氮杂双环[5.4.0]十一碳-7-烯 作用下, 以 戊醇N,N-二甲基乙酰胺 为溶剂, 以54 %的产率得到
    参考文献:
    名称:
    Tetra (C60) 镧酞菁:三阶非线性光学特性的设计、合成和研究
    摘要:
    构建具有有效光诱导分子内电子转移 (PET) 和能量转移 (ET) 过程的分子对于增强非线性光学 (NLO) 特性至关重要。从分子设计的角度构建了一种新型D-π-A型化合物,即四(C 60 )-LaPc,其中以四甲酰基酞菁为供体,四个C 60为受体,并引入苯乙炔基团。作为π电子桥,可以增加分子共轭,降低空间位点电阻,扩大分子的共面性,从而使分子内电荷转移更容易。Tetra (C 60 )–LaPc 具有出色的 NLO 特性,具有巨大的非线性吸收系数(45 cm GW-1和大的三阶磁化率(4.05 × 10 -10 esu),优于LaPc 和C 60。与单组分相比,除了在 532 nm 处表现出优异的非线性光学响应外,四 (C 60 )–LaPc 还将限制范围扩大到近红外区域,在 1064 nm 处显示出光学非线性的显着增强。这可以归因于 C 60和 LaPc之间不同的非线性吸收机制和有效的
    DOI:
    10.1039/d2cp02472a
  • 作为产物:
    描述:
    4-碘酞腈4-乙炔基苯甲醛 在 bis-triphenylphosphine-palladium(II) chloride 、 copper(l) iodide三乙胺 作用下, 以70 %的产率得到4-[2-(3,4-dicyanophenyl)ethynyl]benzaldehyde
    参考文献:
    名称:
    Tetra (C60) 镧酞菁:三阶非线性光学特性的设计、合成和研究
    摘要:
    构建具有有效光诱导分子内电子转移 (PET) 和能量转移 (ET) 过程的分子对于增强非线性光学 (NLO) 特性至关重要。从分子设计的角度构建了一种新型D-π-A型化合物,即四(C 60 )-LaPc,其中以四甲酰基酞菁为供体,四个C 60为受体,并引入苯乙炔基团。作为π电子桥,可以增加分子共轭,降低空间位点电阻,扩大分子的共面性,从而使分子内电荷转移更容易。Tetra (C 60 )–LaPc 具有出色的 NLO 特性,具有巨大的非线性吸收系数(45 cm GW-1和大的三阶磁化率(4.05 × 10 -10 esu),优于LaPc 和C 60。与单组分相比,除了在 532 nm 处表现出优异的非线性光学响应外,四 (C 60 )–LaPc 还将限制范围扩大到近红外区域,在 1064 nm 处显示出光学非线性的显着增强。这可以归因于 C 60和 LaPc之间不同的非线性吸收机制和有效的
    DOI:
    10.1039/d2cp02472a
点击查看最新优质反应信息

文献信息

  • <i>gem</i>-Dibromovinyl phthalonitriles: synthesis, structure elucidation, Hirshfeld surface analysis and energy framework calculations
    作者:Hasrat Ali、Johan E. van Lier
    DOI:10.1039/d3nj04853e
    日期:2024.4.2
    assigned structures were further supported by X-ray crystallographic techniques. The crystal structures showed primarily C–H⋯N, C–H⋯Br, C–Br⋯N and π⋯π interactions. The overall intermolecular interactions in the structures were quantified and fully described by Hirshfeld surface analysis. In addition, energy-frame calculations were used to analyse the three-dimensional topology of the crystal packing
    合成了一系列由偕二溴乙烯基邻苯二甲腈衍生物组成的多功能酞菁前体,并通过各种光谱技术对其进行了表征。X 射线晶体学技术进一步支持了指定的结构。晶体结构主要显示C-H⋯N、C-H⋯Br、C-Br⋯N和π⋯π相互作用。通过赫什菲尔德表面分析对结构中的整体分子间相互作用进行了量化和充分描述。此外,能量框架计算用于分析晶体堆积的三维拓扑。所有化合物的色散能框架均优于静电框架。
  • Synthesis and Properties of Star-Shaped Multiporphyrin−Phthalocyanine Light-Harvesting Arrays
    作者:Junzhong Li、James R. Diers、Jyoti Seth、Sung Ik Yang、David F. Bocian、Dewey Holten、Jonathan S. Lindsey
    DOI:10.1021/jo991001g
    日期:1999.12.1
    Light-harvesting arrays containing four porphyrins covalently linked to a phthalocyanine in a starshaped architecture have been synthesized. Cyclotetramerization of an ethyne-linked porphyrin-phthalonitrile in l-pentanol in the presence of MgCl2 and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) afforded the all-magnesium porphyrin-phthalocyanine pentad in 45% yield. Similar reaction using Zn(OAc)(2). 2H(2)O afforded the all-zinc porphyrin-phthalocyanine pentad in 15% yield. Arrays with different metals (free base, Mg, Zn) in the porphyrin and phthalocyanine macrocycles have been prepared by selective demetalation and metalation steps. This approach provides rapid and convergent access to multiporphyrin-phthalocyanine arrays in diverse metalation states. The arrays are reasonably soluble in organic solvents such as toluene, THF, and CH2Cl2. The arrays exhibit strong absorption in the blue and red regions. Time-resolved and static optical measurements indicate that intramolecular singlet-excited-state energy transfer from the porphyrin to the phthalocyanine moiety is extremely rapid (picoseconds) and efficient. Ground-state electronic communication among the porphyrins is indicated by rapid hole/electron hopping among the metalloporphyrins in the arrays as detected by EPR measurements on the singly oxidized pentads. These physical measurements indicate that the porphyrin-phthalocyanine pentads possess favorable characteristics for light harvesting and other photonics applications.
  • Efficient Synthesis of Light-Harvesting Arrays Composed of Eight Porphyrins and One Phthalocyanine
    作者:Junzhong Li、Jonathan S. Lindsey
    DOI:10.1021/jo991102e
    日期:1999.12.1
    Effective light-harvesting arrays require multiple photoactive:energy donors that funnel energy to an energy acceptor. Porphyrins and phthalocyanines are attractive components for light-harvesting arrays due to their strong absorption in the blue and red regions, respectively, and because energy transfer can occur from porphyrin to phthalocyanine regardless of their respective metalation states. Star-shaped light-harvesting arrays comprised of eight peripheral porphyrins and one core phthalocyanine have been prepared by a streamlined synthesis involving minimal reliance on protecting groups, a high degree of convergence, and facile chromatographic purification. The synthesis involves three distinct stages of complementary chemistries (porphyrin formation, Pd-mediated porphyrin dimer formation, phthalocyanine formation). Statistical reaction of p-iodobenzaldehyde, a phthalonitrile-linked benzaldehyde, and 5-mesityldipyrromethane afforded the desired trans-iodo/phthalonitrile-substituted porphyrin, which underwent Pd-mediated coupling with a monoethynyl porphyrin to give the porphyrin dimer bearing a phthalonitrile unit. Reaction of the dimer in 1-pentanol in the presence of MgCl2 and DBU for 48 h at 145 degrees C afforded the all-magnesium (porphyrin)(8)-phthalocyanine nonamer (MgP)(8)MgPc in 5.0% yield. The same reaction with lithium pentoxide in 1-pentanol for 2 h at 145 OC gave the all-free base nonamer (H2P)(8)H(2)Pe in 34% yield. The all-zinc nonamer (ZnP)(8)ZnPc was prepared by addition of zinc acetate at the end of the reaction. Similar treatment of a monomeric porphyrin-phthalonitrile afforded the pentameric (ZnP)(4)ZnPc in 58% yield. The (MgP)(8)MgPe was also obtained by magnesium insertion of(H2P)(8)H2Pc; The three nonamers were readily purified and are soluble in solvents such as toluene, THF, and CH2Cl2. Each nonamer absorbs strongly across the solar spectrum and exhibits efficient energy transfer from the porphyrins to the phthalocyanine.
  • Tetra (C<sub>60</sub>) lanthanum phthalocyanine: design, synthesis and investigation of the third-order nonlinear optical properties
    作者:Min Zhu、Jiale Ding、Sen Niu、Yunhe Zhang、Guibin Wang
    DOI:10.1039/d2cp02472a
    日期:——
    intramolecular electron transfer (PET) and energy transfer (ET) processes is critical for the enhancement of the nonlinear optical (NLO) properties. A novel D–π–A type compound, namely tetra (C60)–LaPc, has been constructed from a molecular design perspective, wherein tetra-formyl phthalocyanine is used as a donor, four C60 as acceptors and the phenylacetylene group is introduced into it as π-electron bridge
    构建具有有效光诱导分子内电子转移 (PET) 和能量转移 (ET) 过程的分子对于增强非线性光学 (NLO) 特性至关重要。从分子设计的角度构建了一种新型D-π-A型化合物,即四(C 60 )-LaPc,其中以四甲酰基酞菁为供体,四个C 60为受体,并引入苯乙炔基团。作为π电子桥,可以增加分子共轭,降低空间位点电阻,扩大分子的共面性,从而使分子内电荷转移更容易。Tetra (C 60 )–LaPc 具有出色的 NLO 特性,具有巨大的非线性吸收系数(45 cm GW-1和大的三阶磁化率(4.05 × 10 -10 esu),优于LaPc 和C 60。与单组分相比,除了在 532 nm 处表现出优异的非线性光学响应外,四 (C 60 )–LaPc 还将限制范围扩大到近红外区域,在 1064 nm 处显示出光学非线性的显着增强。这可以归因于 C 60和 LaPc之间不同的非线性吸收机制和有效的
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐