摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

diethyl (E)-2-{4-[(2,2-dimethylpropanoyl)amino]pyridin-3-yl}ethenephosphonate | 700862-59-5

中文名称
——
中文别名
——
英文名称
diethyl (E)-2-{4-[(2,2-dimethylpropanoyl)amino]pyridin-3-yl}ethenephosphonate
英文别名
——
diethyl (E)-2-{4-[(2,2-dimethylpropanoyl)amino]pyridin-3-yl}ethenephosphonate化学式
CAS
700862-59-5
化学式
C16H25N2O4P
mdl
——
分子量
340.359
InChiKey
SCCJGXRVLJQIEU-PKNBQFBNSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.3
  • 重原子数:
    23.0
  • 可旋转键数:
    7.0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    77.52
  • 氢给体数:
    1.0
  • 氢受体数:
    5.0

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Inhibition studies with rationally designed inhibitors of the human low molecular weight protein tyrosine phosphatase
    摘要:
    The human low molecular weight protein tyrosine phosphatase (HCPTP) is ubiquitously expressed as two isoforms in a wide range of human cells and may be involved in regulating the metastatic nature of epithelial tumors. A homology model is presented for the HCPTP-B isoform based on known X-ray crystal structures of other low molecular weight PTPs. A comparison of the two isoform structures indicates the possibility of developing isoform-specific inhibitors of HCPTP. Molecular dynamics simulations with CHARMM have been used to study the binding modes of the known adenine effector and phosphate in the active site of both isoforms. This analysis led to the design of the initial lead compound, based on an azaindole ring moiety, which was then also evaluated computationally. A comparison of these simulations indicates the need for a phosphonate group on the indole and provides insight into inhibitor binding modes. Compounds with varying degrees of structural similarity to the azaindole have been synthesized and tested for inhibition with each isoform. These molecular systems were examined with the program AutoDock, and comparisons made with the kinetics and the explicit simulations to validate AutoDock as a screening tool for potential inhibitors. Two compounds were experimentally found to have sub-millimolar inhibition, but the greater solubility of one reinforces the need for experimental testing alongside computational analysis. (C) 2004 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmc.2004.01.042
  • 作为产物:
    参考文献:
    名称:
    Inhibition studies with rationally designed inhibitors of the human low molecular weight protein tyrosine phosphatase
    摘要:
    The human low molecular weight protein tyrosine phosphatase (HCPTP) is ubiquitously expressed as two isoforms in a wide range of human cells and may be involved in regulating the metastatic nature of epithelial tumors. A homology model is presented for the HCPTP-B isoform based on known X-ray crystal structures of other low molecular weight PTPs. A comparison of the two isoform structures indicates the possibility of developing isoform-specific inhibitors of HCPTP. Molecular dynamics simulations with CHARMM have been used to study the binding modes of the known adenine effector and phosphate in the active site of both isoforms. This analysis led to the design of the initial lead compound, based on an azaindole ring moiety, which was then also evaluated computationally. A comparison of these simulations indicates the need for a phosphonate group on the indole and provides insight into inhibitor binding modes. Compounds with varying degrees of structural similarity to the azaindole have been synthesized and tested for inhibition with each isoform. These molecular systems were examined with the program AutoDock, and comparisons made with the kinetics and the explicit simulations to validate AutoDock as a screening tool for potential inhibitors. Two compounds were experimentally found to have sub-millimolar inhibition, but the greater solubility of one reinforces the need for experimental testing alongside computational analysis. (C) 2004 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmc.2004.01.042
点击查看最新优质反应信息

同类化合物

(S)-氨氯地平-d4 (R,S)-可替宁N-氧化物-甲基-d3 (R)-(+)-2,2'',6,6''-四甲氧基-4,4''-双(二苯基膦基)-3,3''-联吡啶(1,5-环辛二烯)铑(I)四氟硼酸盐 (R)-N'-亚硝基尼古丁 (R)-DRF053二盐酸盐 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (2S,2'S)-(-)-[N,N'-双(2-吡啶基甲基]-2,2'-联吡咯烷双(乙腈)铁(II)六氟锑酸盐 (2S)-2-[[[9-丙-2-基-6-[(4-吡啶-2-基苯基)甲基氨基]嘌呤-2-基]氨基]丁-1-醇 (2R,2''R)-(+)-[N,N''-双(2-吡啶基甲基)]-2,2''-联吡咯烷四盐酸盐 (1'R,2'S)-尼古丁1,1'-Di-N-氧化物 黄色素-37 麦斯明-D4 麦司明 麝香吡啶 鲁非罗尼 鲁卡他胺 高氯酸N-甲基甲基吡啶正离子 高氯酸,吡啶 高奎宁酸 马来酸溴苯那敏 马来酸氯苯那敏-D6 马来酸左氨氯地平 顺式-双(异硫氰基)(2,2'-联吡啶基-4,4'-二羧基)(4,4'-二-壬基-2'-联吡啶基)钌(II) 顺式-二氯二(4-氯吡啶)铂 顺式-二(2,2'-联吡啶)二氯铬氯化物 顺式-1-(4-甲氧基苄基)-3-羟基-5-(3-吡啶)-2-吡咯烷酮 顺-双(2,2-二吡啶)二氯化钌(II) 水合物 顺-双(2,2'-二吡啶基)二氯化钌(II)二水合物 顺-二氯二(吡啶)铂(II) 顺-二(2,2'-联吡啶)二氯化钌(II)二水合物 韦德伊斯试剂 非那吡啶 非洛地平杂质C 非洛地平 非戈替尼 非布索坦杂质66 非尼拉朵 非尼拉敏 雷索替丁 阿雷地平 阿瑞洛莫 阿扎那韦中间体 阿培利司N-6 阿伐曲波帕杂质40 间硝苯地平 间-硝苯地平 镉,二碘四(4-甲基吡啶)- 锌,二溴二[4-吡啶羧硫代酸(2-吡啶基亚甲基)酰肼]-