摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(2S)-N-(2-methylbenzylidine)phenylglycine amide | 1006656-87-6

中文名称
——
中文别名
——
英文名称
(2S)-N-(2-methylbenzylidine)phenylglycine amide
英文别名
(S)-N-(2-methylbenzylidine) phenylglycin amide;(S)-N-(2-methylbenzylidene)-phenylglycine amide;(S)-[(2-Methylbenzylidene)amino]-2-phenylacetamide;(2S)-2-[(2-methylphenyl)methylideneamino]-2-phenylacetamide
(2S)-N-(2-methylbenzylidine)phenylglycine amide化学式
CAS
1006656-87-6
化学式
C16H16N2O
mdl
——
分子量
252.316
InChiKey
UJHJTLWIYKUKKG-HNNXBMFYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.7
  • 重原子数:
    19
  • 可旋转键数:
    4
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.12
  • 拓扑面积:
    55.4
  • 氢给体数:
    1
  • 氢受体数:
    2

反应信息

  • 作为反应物:
    参考文献:
    名称:
    对映纯固相存在下的溶液相消旋
    摘要:
    溶液相外消旋通过Viedma首次描述的“手性健忘症”过程驱动固相中单手性的演变。通过将与溶液相中对映异构体相互转化相关的化学速率过程与与溶液-固相通过溶解和再富集转移相关的物理过程脱钩,当前的研究为更好地理解固相脱除机理奠定了基础。分子到晶体上。此外,在这项工作中提出的对映异构体浓度曲线,以及在存在过量对映体纯固体的情况下对消旋过程的分析处理,明确地确认了Meyerhoffer双溶解度法则在溶液消旋条件下对系统的有效性。
    DOI:
    10.1002/chem.200902983
  • 作为产物:
    参考文献:
    名称:
    对映选择性对称性破坏受制于工艺步骤的顺序
    摘要:
    反向进行:可以简单地通过组合不同反应混合物成分的顺序(参见方案I),玻璃珠,II)外消旋混合物(对映体由颜色),III)溶剂,IV)外消旋催化剂)。潜在的机理基于对映选择性晶体生长和溶解之间的微妙平衡。
    DOI:
    10.1002/anie.200907231
点击查看最新优质反应信息

文献信息

  • Structural Investigation of Substituent Effect on Hydrogen Bonding in (<i>S</i>)-Phenylglycine Amide Benzaldimines
    作者:Fanny George、Bernadette Norberg、Johan Wouters、Tom Leyssens
    DOI:10.1021/acs.cgd.5b00621
    日期:2015.8.5
    five types according to their hydrogen bonding motifs. The potential interplay of steric and electronic effects of the substituents on the resulting bonding patterns, conformational features and packing was investigated. Our analysis revealed that neither mesomeric/inductive factors of halogens nor π–π stacking, C–H···π, and other hydrophobic interactions affect the structural outcome. The type affiliation
    对具有各种取代基(CH 3,Ph,OCH 3,F,Cl,Br,NO 2的(S)-苯基甘酸酰胺苯甲二胺的23种新晶体结构的详细结构分析)在亚苄基上进行该贡献。这些化合物属于高度研究的席夫碱家族。Etter的命名法和Hirshfeld表面分别用于描述这些化合物中存在的强氢键和次级相互作用。出乎意料的是,根据其氢键基序可以将全部23种获得的结构分为五种类型。研究了取代基的空间和电子效应对所得键合图案,构象特征和堆积的潜在相互作用。我们的分析表明,卤素的介观/诱导因子或π–π堆积,CH–··π和其他疏相互作用都不会影响结构结果。类型从属关系是由于三个参数的相互作用:(1)形成基序的强氢键数(热力学因子),(2)形成基序的难易程度(动力学因子),(3)基序在不同位置容纳取代基的能力(位阻因子)。因此,有可能提出五种结构类型的稳定性等级,并在遇到多态性时鉴定出稳定的形式。
  • Complete Deracemization by Attrition-Enhanced Ostwald Ripening Elucidated
    作者:Wim L. Noorduin、Hugo Meekes、Willem J. P. van Enckevort、Alessia Millemaggi、Michel Leeman、Bernard Kaptein、Richard M. Kellogg、Elias Vlieg
    DOI:10.1002/anie.200801846
    日期:2008.8.11
  • Linear Deracemization Kinetics during Viedma Ripening: Autocatalysis Overruled by Chiral Additives
    作者:René R. E. Steendam、Janneke Dickhout、Willem J. P. van Enckevort、Hugo Meekes、Jan Raap、Floris P. J. T. Rutjes、Elias Vlieg
    DOI:10.1021/acs.cgd.5b00127
    日期:2015.4.1
    Viedma ripening proceeds through an autocatalytic feedback mechanism which exponentially deracemizes an initially racemic solid state to an enantiopure end state. Here we show that, in the presence of enantiopure additives with a concentration of as low as 2.5 × 10–2 mol %, Viedma ripening proceeds with an overall linear and faster increase in enantiomeric excess. These experimental results can be explained using a simple model which assumes a difference in growth and dissolution rates between the enantiomers. This model also accounts for the generally observed linearity during the initial stages of Viedma ripening without additives.
  • Controlling the Effect of Chiral Impurities on Viedma Ripening
    作者:René R. E. Steendam、Bram Harmsen、Hugo Meekes、Willem J. P. van Enckevort、Bernard Kaptein、Richard M. Kellogg、Jan Raap、Floris P. J. T. Rutjes、Elias Vlieg
    DOI:10.1021/cg400927m
    日期:2013.11.6
    Spontaneous symmetry breaking and chiral amplification by means of Viedma ripening by definition should result in complete deracemization of a racemic conglomerate into either one of the enantiomers with equal probability. In practice, however, chiral impurities influence Viedma ripening and one enantiomer is obtained in preference over the other. Here, we show that by increasing the attrition intensity during Viedma ripening, the effect of chiral impurities is suppressed and deracemization does yield either enantiomer with equal probability. The reason for this is that the resulting smaller crystals lead to such a low surface density of chiral impurities that they no longer inhibit the crystal growth sufficiently to determine the chiral outcome. Furthermore, we show that even for low attrition intensities, the effect of chiral impurities can be canceled by using the right amount (10 ppm) of chiral additives.
  • Attrition-enhanced total resolution leads to homochiral families of amino acid derivatives
    作者:Michel Leeman、Jesse M. de Gooier、Karin Boer、Karen Zwaagstra、Bernard Kaptein、Richard M. Kellogg
    DOI:10.1016/j.tetasy.2010.04.007
    日期:2010.5
    The total resolution of five structurally similar racemizable amino acid derivatives, three of which have racemic crystal structures, was performed simultaneously. By enantioselective incorporation in an amino acid derivative that forms a conglomerate the other four were deracemized on attrition-induced grinding. The outcome of the resolution was random (R) or (S), but all compounds had the same absolute configuration and high enantiomeric purities. (C) 2010 Published by Elsevier Ltd.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸