Lacosamide Isothiocyanate-Based Agents: Novel Agents To Target and Identify Lacosamide Receptors
摘要:
(R)-Lacosamide ((R)-2, (R)-N-benzyl 2-acetamido-3-methoxypropionamide) has recently gained regulatory approval for the treatment of partial-onset seizures in adults. Whole animal pharmacological studies have documented that (R)-2 function is unique: A robust strategy is advanced for the discovery of interacting proteins associated with function and toxicity of (R)-2 through the use of (R)-2 analogues, 3, which contain "affinity bait (AB)" and "chemical reporter (CR)" functional groups. In 3, covalent modification of the interacting proteins proceeds at the AB moiety, and detection or isolation of the selectively captured protein occurs through the bioorthogonal CR group upon reaction with all appropriate probe. We report the synthesis, pharmacological evaluation, and interrogation of the mouse soluble brain proteome using 3 where the AB group is an isothiocyanate moiety. One compound, (R)-N-(4-isothiocyanato)benzyl 2-acetamido-3-(prop-2-ynyloxy)propionamide ((R)-9), exhibited excellent Seizure protection in mice, and like (R)-2, anticonvulsant activity principally resided in the (R)-stereoisomer. Several proteins were preferentially labeled by (R)-9 compared with (S)-9, including collapsin response mediator protein 2.
Ring-Opening of Aziridine-2-Carboxamides with Carbohydrate C1-<i>O</i>-Nucleophiles. Stereoselective Preparation of α- and β-<i>O</i>-Glycosyl Serine Conjugates
作者:Daniel A. Ryan、David Y. Gin
DOI:10.1021/ja804589j
日期:2008.11.19
The stereoselective formation of the alpha-GalNAc-Ser linkage via the ring opening of aziridine-2-carboxamides with pyranose C1-O-nucleophiles is described. The process is tolerant to the native C2-NHAc group, can be modulated to provide either the alpha- or beta-glycoside through judicious choice of solvent and metal counterion, and is amenable to other classes of O-glycosyl-Ser constructs such as the B-GlcNAc-Ser and alpha-Man-Ser linkages. This coupling reaction also led to the development of the o-allylbenzyl (ABn) moiety as a new C-terminus carboxyl protective group, which allows for the use of novel methods for N- and C-terminus extension of amino acids following carbohydrate conjugation.