equimolar mixture of (η5-C5H5)Fe(CO)2SiR3, FpSiR3, and FpMe leads to the efficient formation of the silicon−carbon-coupled product R3SiMe, R3 = Me3, Me2Ph, MePh2, Ph3, ClMe2, Cl2Me, Cl3, Me2Ar (Ar = C6H4-p-X, X = F, OMe, CF3, NMe2). Similar chemistry occurs with related germyl and stannyl complexes at slower rates, Si > Ge ≫ Sn. Substitution of an aryl hydrogen to form FpSiMe2C6H4-p-X has little effect on
(η 5 -C 5 H 5 )Fe(CO) 2 SiR 3、FpSiR 3和 FpMe的等摩尔混合物的光
化学照射导致有效形成
硅碳耦合产物 R 3 SiMe,R 3 = Me 3 , Me 2 Ph, MePh 2 , Ph 3 , ClMe 2 , Cl 2 Me, Cl 3 , Me 2 Ar (Ar = C 6 H 4 - p -X, X = F, OMe, CF 3 , NMe 2)。类似的
化学反应发生在相关的
锗基和甲
锡基复合物上,速率较慢,Si > Ge ≫ Sn。芳基
氢取代以形成 FpSiMe 2 C 6 H 4 - p -X 对反应速率几乎没有影响,而
硅上的
甲基被 Cl 逐渐取代会减慢该过程。此外,将 FpMe 改为 FpCH 2 SiMe 3 会显着减慢反应速度,使用 (η 5 -C 5 Me 5 )Fe(CO) 2衍
生物也是如此。涉及 16e -
中间体 (η 5 -C 5 H