摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2,5-bis(bromomethyl)benzoate | 148692-73-3

中文名称
——
中文别名
——
英文名称
2,5-bis(bromomethyl)benzoate
英文别名
Ethyl 2,5-bis(bromomethyl)benzoate
2,5-bis(bromomethyl)benzoate化学式
CAS
148692-73-3
化学式
C11H12Br2O2
mdl
——
分子量
336.023
InChiKey
WZROPXLJBQDEPO-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    393.8±42.0 °C(Predicted)
  • 密度:
    1.656±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    3.3
  • 重原子数:
    15
  • 可旋转键数:
    5
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.36
  • 拓扑面积:
    26.3
  • 氢给体数:
    0
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2,5-bis(bromomethyl)benzoatesodium hydroxide氯化亚砜sodium ethanolate三氟乙酸 作用下, 以 二氯甲烷 为溶剂, 反应 28.0h, 生成
    参考文献:
    名称:
    基于α-酮酸基序的二齿蛋白酪氨酸磷酸酶抑制剂库的并行合成。
    摘要:
    蛋白质酪氨酸磷酸酶(PTPases)通过控制细胞中酪氨酸磷酸化水平来调节细胞内信号转导途径。这些酶在包括II型糖尿病和鼠疫耶尔森菌(鼠疫是鼠疫的致病菌)感染在内的多种疾病中起着重要作用。该报告描述了使用并行溶液相方法合成104种PTPase潜在抑制剂的文库。库成员基于双(芳基α-酮羧酸)基序,该基序在中央苯接头上结合了羧酸。该羧酸通过酰胺键与多种不同的芳族胺偶联。设计所得酰胺的芳族成分以使其与围绕PTPase活性位点的残基接触。针对耶尔森氏菌PTPase和PTP1B筛选了该文库。根据筛选结果,选择了该库的四个成员进行进一步研究。对这四种化合物针对耶尔森氏菌PTPase,PTP1B,TCPTP,CD45和LAR进行了评估。化合物14对PTP1B的IC(50)值为590nM,是可逆的竞争性抑制剂。这种亲和力表示效力比化合物2(文库所基于的母体结构)高120倍以上。第二种抑制剂化合物12对耶尔森
    DOI:
    10.1016/j.bmc.2004.03.058
  • 作为产物:
    描述:
    参考文献:
    名称:
    Simple Mechanical Molecular and Supramolecular Machines: Photochemical and Electrochemical Control of Switching Processes
    摘要:
    AbstractPhotochemical control of a self‐assembled supramolecular 1:1 pseudorotaxane (formed between a tetracationic cyclophane, namely the tetrachloride salt of cyclobis(paraquat‐p‐phenylene), and 1,5‐bis[2‐(2‐(2‐hydroxy)ethoxy)ethoxy]naphthalene) has been achieved in aqueous solution. The photochemical one‐electron reduction of the cyclophane to the radical trication weakens the noncovalent bonding interactions between the cyclophane and the naphthalene guest—π‐π interactions between the π‐electron‐rich and π‐electron‐poor aromatic systems, and hydrogen‐bonding interactions between the acidic α‐bipyridinium hydrogen atoms of the cyclophane and the polyether oxygen atoms of the naphthalene derivative—sufficiently to allow the guest to dethread from the cavity; the process can be monitored by the appearance of naphthalene fluorescence. The radical tricationic cyclophane can be oxidized back to the tetracation in the dark by allowing oxygen gas into the system. This reversible process is marked by the disappearance of naphthalene fluorescence as the molecule is recomplexed by the tetracationic cyclophane. This supramolecular system can be chemically modified such that the π‐electron‐rich unit, either a naphthalene derivative or a hydroquinone ring, and the tetracationic cyclophane are covalently linked. We have demonstrated that the π‐electron‐rich residue in this system is totally “self‐complexed” by the cyclophane to which it is covalently attached. Additionally, the self‐complexation can be switched “off” and “on” by electrochemical two‐electron reductions and oxidations, respectively, of the tetracationic cyclophane component. Thus, we have achieved the construction of two switches at the nanoscale level, one driven by photons and the other by electrons.
    DOI:
    10.1002/chem.19970030123
点击查看最新优质反应信息

文献信息

  • Thermodynamic forecasting of mechanically interlocked switches
    作者:Mark A. Olson、Adam B. Braunschweig、Taichi Ikeda、Lei Fang、Ali Trabolsi、Alexandra M. Z. Slawin、Saeed I. Khan、J. Fraser Stoddart
    DOI:10.1039/b911874h
    日期:——
    Mechanically interlocked molecular (MIM) switches in the form of bistable [2]rotaxanes and [2]catenanes have proven to be—when incorporated in molecular electronic devices (MEDs) and in nanoelectromechanical systems (NEMS)—a realistic and viable alternative to the silicon chip density challenge. Structural modifications and chemical environment can have a large impact on the relaxation thermodynamics
    机械稳定的分子互锁(MIM)开关以双稳态[2]轮烷和[2]邻苯二酚的形式被证明是-当结合到分子电子设备(MED)和纳米机电系统(NEMS)中时,是一种切实可行的替代方法芯片密度挑战。结构修饰和化学环境可能会对分子运动的弛豫热力学产生重大影响,例如负责基于MIM的设备运行的双稳态轮烷和链烷中的平移和环旋。结构修饰对自由能差(ΔG o对于可切换MIM中的平衡过程,可以通过首先考虑其前体假轮烷中存在的相互作用来预测。通过使用等温滴定微量热法(ITC)研究X射线晶体学数据,研究了一系列具有不同供体的单取代受体主环环烷的伪轮烷形成的热力学参数,以及伪轮烷与非共价键相互作用之间的明显联系。可以确定在机械结合形成后仍然存在的MIM。它遵循的变化(ΔΔ ģ ø在自由能不同pseudorotaxanes的形成过程中的差异值)随后可被外推到预测Δ ģ ö使用相同的施主-受主识别组件,与模拟MIM开关中的开关
  • Synthesis and characterization of a paramagnetic receptor based on cyclobis(paraquat-p-phenylene) tetracation
    作者:Andrea Margotti、Costanza Casati、Marco Lucarini、Elisabetta Mezzina
    DOI:10.1016/j.tetlet.2008.05.088
    日期:2008.8
    Synthesis of a new class of π-electron-deficient tetracationic cyclophane ring, cyclobis(paraquat-p-phenylene), carrying one or two paramagnetic side-arms based on 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) moiety has been achieved in five steps starting from 2,5-dimethyl benzoic acid. The possibility of exploiting the proposed cyclophanes as hosts in rotaxane-like structures was tested preparing
    合成一种新型的π电子缺陷型四阳离子环烷环,环双(百草枯-对苯撑),该环带有一个或两个基于2,2,6,6-四甲基哌啶-N-氧基(TEMPO)的顺磁侧臂从2,5-二甲基苯甲酸开始,已在五个步骤中实现了部分的化学式。在存在1,5-二甲氧基萘DMN)的情况下,通过削波程序测试了利用拟议的环烷类作为轮烷样结构中的宿主的可能性,从而制备了自由基受体。模板的添加允许使用DMN隔离单自由基复合物。
  • Benniston, Andrew C.; Gardner, Struan; Farrugia, Louis J., Journal of Chemical Research, Miniprint, 2000, # 8, p. 901 - 930
    作者:Benniston, Andrew C.、Gardner, Struan、Farrugia, Louis J.、Harriman, Anthony
    DOI:——
    日期:——
  • The synthesis of a pyrrole-functionalized cyclobis(paraquat-p-phenylene) derivative and its corresponding [2]rotaxane and [2]catenane and their subsequent deposition onto an electrode surface
    作者:Graeme Cooke、Lee M. Daniels、Francine Cazier、James F. Garety、Shanika Gunatilaka Hewage、Andrew Parkin、Gouher Rabani、Vincent M. Rotello、Chick C. Wilson、Patrice Woisel
    DOI:10.1016/j.tet.2007.08.027
    日期:2007.11
    We report the convenient synthesis of a pyrrole-functionalized tetracationic cyclophane, [2]rotaxane, and [2]catenane. X-ray crystallography has confirmed the interlocked structure of the catenane. We have investigated the solution properties of these systems using solution electrochemistry, NMR, and UV-vis spectroscopy. We have also demonstrated that it is possible to immobilize these systems onto a platinum working electrode surface. We have shown that films of the cyclophane have the ability to undergo complexation with a di-alkyloxynaphthalene derivative. (c) 2007 Elsevier Ltd. All rights reserved.
  • A Tuneable Self-Complexing Molecular Switch
    作者:Graeme Cooke、Patrice Woisel、Marc Bria、François Delattre、James F. Garety、Shanika Gunatilaka Hewage、Gouher Rabani、Georgina M. Rosair
    DOI:10.1021/ol0602553
    日期:2006.3.1
    A new self-complexing donor-acceptor system has been synthesized that has the propensity to undergo intramolecular decomplexation under thermal and electrochemical perturbation and upon addition of a competitive guest for the cyclophane's cavity.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫