Anti-HIV-1 activity of a tripodal receptor that recognizes mannose oligomers
摘要:
The glycoprotein gp120 of the HIV-1 viral envelope has a high content in mannose residues, particularly alpha-1,2-mannose oligomers. Compounds that interact with these high-mannose type glycans may disturb the interaction between gp120 and its (co)receptors and are considered potential anti-HIV agents. Previously, we demonstrated that a tripodal receptor (1), with a central scaffold of 1,3,5-triethylbenzene substituted with three 2,3,4-trihydroxybenzoyl groups, selectively recognizes alpha-1,2-mannose polysaccharides. Here we present additional studies to determine the anti-HIV-1 activity and the mechanism of antiviral activity of this compound. Our studies indicate that 1 shows anti-HIV-1 activity in the low micromolar range and has pronounced gp120 binding and HIV-1 integrase inhibitory capacity. However, gp120 binding rather than integrase inhibition seems to be the primary mechanism of antiviral activity of 1. (C) 2015 Elsevier Masson SAS. All rights reserved.
[EN] GP120 -BINDING BENZENE COMPOUNDS AND SACCHARIDE COMPOUNDS<br/>[FR] COMPOSÉS DE BENZÈNES ET DE SACCHARIDES SE LIANT À GP120
申请人:UNIV LEUVEN KATH
公开号:WO2011085454A1
公开(公告)日:2011-07-21
The present invention provides for novel benzene compounds and saccharide compounds and for the use of said compounds for binding, titration (quantification), removing, purifying or separating the glycoprotein gp120, gp120 comprising viruses or cells infected with gp120 comprising viruses. The invention also provides for a method for the detection, binding, titration (quantification), removal, purification or separation of (or directing therapeutic or other agents to) gp120, gp120 comprising viruses or cells infected with gp120 comprising viruses. The invention further provides for the use of the compounds and for methods using the compounds for directing anti -viral drugs or other agents to gp120 comprising viruses or to gp120 comprising virus - infected cells. The present invention also provides processes for the preparation of said novel compounds.
The glycoprotein gp120 of the HIV-1 viral envelope has a high content in mannose residues, particularly alpha-1,2-mannose oligomers. Compounds that interact with these high-mannose type glycans may disturb the interaction between gp120 and its (co)receptors and are considered potential anti-HIV agents. Previously, we demonstrated that a tripodal receptor (1), with a central scaffold of 1,3,5-triethylbenzene substituted with three 2,3,4-trihydroxybenzoyl groups, selectively recognizes alpha-1,2-mannose polysaccharides. Here we present additional studies to determine the anti-HIV-1 activity and the mechanism of antiviral activity of this compound. Our studies indicate that 1 shows anti-HIV-1 activity in the low micromolar range and has pronounced gp120 binding and HIV-1 integrase inhibitory capacity. However, gp120 binding rather than integrase inhibition seems to be the primary mechanism of antiviral activity of 1. (C) 2015 Elsevier Masson SAS. All rights reserved.