Importance of weak interactions in developing 1,3-bis(4,6-dimethyl-1H-nicotinonitrile-1-yl)1,3-dioxy propane polymorphs
摘要:
The structure of 1,3-bis(4,6-dimethyl-1H-nicotinonitrile-1-yl)1,3-dioxy propane polymorphs has been characterized by X-ray diffraction, FT-IR, H-1 and C-13 NMR spectroscopies. The influence of intra and intermolecular weak interactions is thoroughly studied in solid state using single crystal X-ray diffraction and FT-IR. These polymorphs belong to monoclinic space group 'P2(1/n)' and 'P2(1/c)'. These polymorphs have C-H center dot center dot center dot n (lone pair), hydrogen bonds. C-N center dot center dot center dot pi, C-H center dot center dot center dot pi and pi center dot center dot center dot pi intermolecular non-covalent interactions. These polymorphs are the result of weak interactions and solvent used in crystallization. The FT-IR spectra have been recorded in the solid phase and NMR has been recorded in solvent. The optimized geometry has been calculated by B3LYP methods using different basis sets. The FT-IR and NMR spectra of 1st polymorphs has been calculated at B3LYP/6-31G (d) level. The scaled theoretical wave number showed good agreement with the experimental values. These two polymorphs as well as other stereomers are studied by DFT calculations. (C) 2011 Elsevier B.V. All rights reserved.
The structure of 1,3-bis(4,6-dimethyl-1H-nicotinonitrile-1-yl)1,3-dioxy propane polymorphs has been characterized by X-ray diffraction, FT-IR, H-1 and C-13 NMR spectroscopies. The influence of intra and intermolecular weak interactions is thoroughly studied in solid state using single crystal X-ray diffraction and FT-IR. These polymorphs belong to monoclinic space group 'P2(1/n)' and 'P2(1/c)'. These polymorphs have C-H center dot center dot center dot n (lone pair), hydrogen bonds. C-N center dot center dot center dot pi, C-H center dot center dot center dot pi and pi center dot center dot center dot pi intermolecular non-covalent interactions. These polymorphs are the result of weak interactions and solvent used in crystallization. The FT-IR spectra have been recorded in the solid phase and NMR has been recorded in solvent. The optimized geometry has been calculated by B3LYP methods using different basis sets. The FT-IR and NMR spectra of 1st polymorphs has been calculated at B3LYP/6-31G (d) level. The scaled theoretical wave number showed good agreement with the experimental values. These two polymorphs as well as other stereomers are studied by DFT calculations. (C) 2011 Elsevier B.V. All rights reserved.