摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-[2-[[5,11,17,23-Tetratert-butyl-27-[2-(1,3-dioxobenzo[de]isoquinolin-2-yl)ethoxy]-26,28-dihydroxy-25-pentacyclo[19.3.1.13,7.19,13.115,19]octacosa-1(24),3,5,7(28),9,11,13(27),15(26),16,18,21(25),22-dodecaenyl]oxy]ethyl]benzo[de]isoquinoline-1,3-dione | 875008-66-5

中文名称
——
中文别名
——
英文名称
2-[2-[[5,11,17,23-Tetratert-butyl-27-[2-(1,3-dioxobenzo[de]isoquinolin-2-yl)ethoxy]-26,28-dihydroxy-25-pentacyclo[19.3.1.13,7.19,13.115,19]octacosa-1(24),3,5,7(28),9,11,13(27),15(26),16,18,21(25),22-dodecaenyl]oxy]ethyl]benzo[de]isoquinoline-1,3-dione
英文别名
2-[2-[[5,11,17,23-tetratert-butyl-27-[2-(1,3-dioxobenzo[de]isoquinolin-2-yl)ethoxy]-26,28-dihydroxy-25-pentacyclo[19.3.1.13,7.19,13.115,19]octacosa-1(24),3,5,7(28),9,11,13(27),15(26),16,18,21(25),22-dodecaenyl]oxy]ethyl]benzo[de]isoquinoline-1,3-dione
2-[2-[[5,11,17,23-Tetratert-butyl-27-[2-(1,3-dioxobenzo[de]isoquinolin-2-yl)ethoxy]-26,28-dihydroxy-25-pentacyclo[19.3.1.13,7.19,13.115,19]octacosa-1(24),3,5,7(28),9,11,13(27),15(26),16,18,21(25),22-dodecaenyl]oxy]ethyl]benzo[de]isoquinoline-1,3-dione化学式
CAS
875008-66-5
化学式
C72H74N2O8
mdl
——
分子量
1095.39
InChiKey
HTGFYMPJWXDDRP-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    17.5
  • 重原子数:
    82
  • 可旋转键数:
    12
  • 环数:
    11.0
  • sp3杂化的碳原子比例:
    0.33
  • 拓扑面积:
    134
  • 氢给体数:
    2
  • 氢受体数:
    8

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    参考文献:
    名称:
    Recognition of Polycyclic Aromatic Hydrocarbons and Their Derivatives by the 1,3-Dinaphthalimide Conjugate of Calix[4]arene: Emission, Absorption, Crystal Structures, and Computational Studies
    摘要:
    Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants as well as well-known carcinogens. Therefore, it is important to develop an effective receptor for the detection and quantification of such molecules in solution. In view of this, a 1,3-dinaphthalimide derivative of calix[4]arene (L) has been synthesized and characterized, and the structure has been established by single crystal XRD. In the crystal lattice, intermolecular arm-to-arm pi center dot center dot center dot pi overlap dominates and thus L becomes a promising receptor for providing interactions with the aromatic species in solution, which can be monitored by following the changes that occur in its fluorescence and absorption spectra. On the basis of the solution studies carried out with about 17 derivatives of the aromatic guest molecular systems, it may be concluded that the changes that occur in the fluorescence intensity seem to be proportional to the number of aromatic rings present and thus proportional to the extent of pi center dot center dot center dot pi interaction present between the naphthalimide moieties and the aromatic portion of the guest molecule. Though the nonaromatic portion of the guest species affects the fluorescence quenching, the trend is still based on the number of rings present in these. Four guest aldehydes are bound to L with K-ass of 2000-6000 M-1 and their minimum detection limit is in the range of 8-35 mu M. The crystal structure of a naphthaldehyde complex, L.2b, exhibits intermolecular arm-to-arm as well as arm-to-naphthaldehyde pi center dot center dot center dot pi interactions. Molecular dynamics studies of L carried out in the presence of aromatic aldehydes under vacuum as well as in acetonitrile resulted in exhibiting interactions observed in the solid state and hence the changes observed in the fluorescence and absorption spectra are attributable for such interactions. Complex formation has also been delineated through ESI MS studies. Thus L is a promising receptor that can recognize PAHs by providing spectral changes proportional to the aromatic conjugation of the guest and the extent of aromatic pi center dot center dot center dot pi interactions present between L and the guest.
    DOI:
    10.1021/jo1023409
点击查看最新优质反应信息

文献信息

  • Recognition of Polycyclic Aromatic Hydrocarbons and Their Derivatives by the 1,3-Dinaphthalimide Conjugate of Calix[4]arene: Emission, Absorption, Crystal Structures, and Computational Studies
    作者:Anilkumar Bandela、Jugun Prakash Chinta、Vijaya Kumar Hinge、Amol G. Dikundwar、Tayur N. Guru Row、Chebrolu P. Rao
    DOI:10.1021/jo1023409
    日期:2011.3.18
    Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants as well as well-known carcinogens. Therefore, it is important to develop an effective receptor for the detection and quantification of such molecules in solution. In view of this, a 1,3-dinaphthalimide derivative of calix[4]arene (L) has been synthesized and characterized, and the structure has been established by single crystal XRD. In the crystal lattice, intermolecular arm-to-arm pi center dot center dot center dot pi overlap dominates and thus L becomes a promising receptor for providing interactions with the aromatic species in solution, which can be monitored by following the changes that occur in its fluorescence and absorption spectra. On the basis of the solution studies carried out with about 17 derivatives of the aromatic guest molecular systems, it may be concluded that the changes that occur in the fluorescence intensity seem to be proportional to the number of aromatic rings present and thus proportional to the extent of pi center dot center dot center dot pi interaction present between the naphthalimide moieties and the aromatic portion of the guest molecule. Though the nonaromatic portion of the guest species affects the fluorescence quenching, the trend is still based on the number of rings present in these. Four guest aldehydes are bound to L with K-ass of 2000-6000 M-1 and their minimum detection limit is in the range of 8-35 mu M. The crystal structure of a naphthaldehyde complex, L.2b, exhibits intermolecular arm-to-arm as well as arm-to-naphthaldehyde pi center dot center dot center dot pi interactions. Molecular dynamics studies of L carried out in the presence of aromatic aldehydes under vacuum as well as in acetonitrile resulted in exhibiting interactions observed in the solid state and hence the changes observed in the fluorescence and absorption spectra are attributable for such interactions. Complex formation has also been delineated through ESI MS studies. Thus L is a promising receptor that can recognize PAHs by providing spectral changes proportional to the aromatic conjugation of the guest and the extent of aromatic pi center dot center dot center dot pi interactions present between L and the guest.
查看更多