摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,3-bis[3-(n-decyl)thien-2-yl]-5-(n-decyl)thieno[3,4-c]pyrrole-4,6-dione | 1327275-55-7

中文名称
——
中文别名
——
英文名称
1,3-bis[3-(n-decyl)thien-2-yl]-5-(n-decyl)thieno[3,4-c]pyrrole-4,6-dione
英文别名
——
1,3-bis[3-(n-decyl)thien-2-yl]-5-(n-decyl)thieno[3,4-c]pyrrole-4,6-dione化学式
CAS
1327275-55-7
化学式
C44H67NO2S3
mdl
——
分子量
738.219
InChiKey
ONTOLQRXKMMUNR-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    772.0±60.0 °C(predicted)
  • 密度:
    1.053±0.06 g/cm3(Temp: 20 °C; Press: 760 Torr)(predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    15.31
  • 重原子数:
    50.0
  • 可旋转键数:
    29.0
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.68
  • 拓扑面积:
    37.38
  • 氢给体数:
    0.0
  • 氢受体数:
    5.0

反应信息

  • 作为反应物:
    描述:
    1,3-bis[3-(n-decyl)thien-2-yl]-5-(n-decyl)thieno[3,4-c]pyrrole-4,6-dione溶剂黄146 作用下, 以 氯仿 为溶剂, 反应 4.0h, 以82%的产率得到1,3-bis[5-bromo-3-(n-decyl)thiophen-2-yl]-5-(n-decyl)thieno[3,4-c]pyrrole-4,6-dione
    参考文献:
    名称:
    Thieno[3,4-c]pyrrole-4,6-dione-Based Polymer Semiconductors: Toward High-Performance, Air-Stable Organic Thin-Film Transistors
    摘要:
    We report a new,p-type semiconducting polymer family based on the thieno[3,4-c]pyrrole-4,6-dione (TPD) building block, which exhibits good processability as well as good mobility and lifetime stability in thin-film transistors (TFTs). TPD homopolymer P1 was synthesized via Yamamoto coupling, whereas copolymers P2-P8 were synthesized via Stile coupling. All of these polymers were characterized by chemical analysis as well as thermal analysis, optical spectroscopy, and cyclic voltammetry. P2-P7 have lower-lying HOMOs than does P3HT by 0.24-0.57 eV, depending on the donor counits, and exhibit large oscillator strengths in the visible region with similar optical band gaps throughout the series (similar to 1.80 eV). The electron-rich character of the dialkoxybithiophene counits in P8 greatly compresses the band gap, resulting in the lowest E-g(opt) in the series (1.66 eV), but also raising the HOMO energy to -5.11 eV. Organic thin-film transistor (OTFT) electrical characterization indicates that device performance is very sensitive to the oligothiophene conjugation length, but also to the solubilizing side chain substituEnts (length, positional pattern). The corresponding thin-film microstructures and morphologies were investigated by XRD and AFM to correlate with the OTFT performance. By strategically varying the oligothiophene donor conjugation length and optimizing the solubilizing side chains, a maximum OTFT hole mobility of similar to 0.6 cm(2) V-1 s(-1) is achieved for P4-based devices. OTFT environmental (storage) and operational (bias) stability in ambient was investigated, and enhanced performance is observed due to the low-lying HOMOs. These results indicate that the TPD is an excellent building block for constructing high-performance polymers for p-type transistor applications due to the excellent processability, substantial hole mobility, and good device stability.
    DOI:
    10.1021/ja205398u
  • 作为产物:
    描述:
    在 bis-triphenylphosphine-palladium(II) chloride 、 N-溴代丁二酰亚胺(NBS)氯化亚砜硫酸三氟乙酸 作用下, 以 四氢呋喃 为溶剂, 反应 12.0h, 生成 1,3-bis[3-(n-decyl)thien-2-yl]-5-(n-decyl)thieno[3,4-c]pyrrole-4,6-dione
    参考文献:
    名称:
    Thieno[3,4-c]pyrrole-4,6-dione-Based Polymer Semiconductors: Toward High-Performance, Air-Stable Organic Thin-Film Transistors
    摘要:
    We report a new,p-type semiconducting polymer family based on the thieno[3,4-c]pyrrole-4,6-dione (TPD) building block, which exhibits good processability as well as good mobility and lifetime stability in thin-film transistors (TFTs). TPD homopolymer P1 was synthesized via Yamamoto coupling, whereas copolymers P2-P8 were synthesized via Stile coupling. All of these polymers were characterized by chemical analysis as well as thermal analysis, optical spectroscopy, and cyclic voltammetry. P2-P7 have lower-lying HOMOs than does P3HT by 0.24-0.57 eV, depending on the donor counits, and exhibit large oscillator strengths in the visible region with similar optical band gaps throughout the series (similar to 1.80 eV). The electron-rich character of the dialkoxybithiophene counits in P8 greatly compresses the band gap, resulting in the lowest E-g(opt) in the series (1.66 eV), but also raising the HOMO energy to -5.11 eV. Organic thin-film transistor (OTFT) electrical characterization indicates that device performance is very sensitive to the oligothiophene conjugation length, but also to the solubilizing side chain substituEnts (length, positional pattern). The corresponding thin-film microstructures and morphologies were investigated by XRD and AFM to correlate with the OTFT performance. By strategically varying the oligothiophene donor conjugation length and optimizing the solubilizing side chains, a maximum OTFT hole mobility of similar to 0.6 cm(2) V-1 s(-1) is achieved for P4-based devices. OTFT environmental (storage) and operational (bias) stability in ambient was investigated, and enhanced performance is observed due to the low-lying HOMOs. These results indicate that the TPD is an excellent building block for constructing high-performance polymers for p-type transistor applications due to the excellent processability, substantial hole mobility, and good device stability.
    DOI:
    10.1021/ja205398u
点击查看最新优质反应信息

同类化合物

锡烷,1,1'-(3,3'-二烷基[2,2'-二噻吩]-5,5'-二基)双[1,1,1-三甲基- 试剂5,10-Bis((5-octylthiophen-2-yl)dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene-2,7-diyl)bis(trimethylstannane) 试剂2,2'-Thieno[3,2-b]thiophene-2,5-diylbis-3-thiophenecarboxylicacid 试剂1,1'-[4,8-Bis[5-(dodecylthio)-2-thienyl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl]bis[1,1,1-trimethylstannane] 苯并[b]噻吩,3-(2-噻嗯基)- 聚(3-己基噻吩-2,5-二基)(区域规则) 甲基[2,3'-联噻吩]-5-羧酸甲酯 牛蒡子醇 B 噻吩并[3,4-B]吡嗪,5,7-二-2-噻吩- 噻吩[3,4-B]吡嗪,5,7-双(5-溴-2-噻吩)- 十四氟-Alpha-六噻吩 三丁基(5''-己基-[2,2':5',2''-三联噻吩]-5-基)锡 α-四联噻吩 α-六噻吩 α-五联噻吩 α-七噻吩 α,ω-二己基四噻吩 5,5′-双(3-己基-2-噻吩基)-2,2′-联噻吩 α,ω-二己基六联噻吩 Α-八噻吩 alpha-三联噻吩甲醇 alpha-三联噻吩 [3,3-Bi噻吩]-2,2-二羧醛 [2,2’]-双噻吩-5,5‘-二甲醛 [2,2':5',2''-三联噻吩]-5,5''-二基双[三甲基硅烷] [2,2'-联噻吩]-5-甲醇,5'-(1-丙炔-1-基)- [2,2'-联噻吩]-5-甲酸甲酯 [2,2'-联噻吩]-5-乙酸,a-羟基-5'-(1-炔丙基)-(9CI) IN1538,4,6-双(4-癸基噻吩基)-噻吩并[3,4-C][1,2,5]噻二唑(S) C-[2,2-二硫代苯-5-基甲基]胺 6,6,12,12-四(4-己基苯基)-6,12-二氢二噻吩并[2,3-D:2',3'-D']-S-苯并二茚并[1,2-B:5,6-B']二噻吩-2,8-双三甲基锡 5’-己基-2,2’-联噻吩-5-硼酸频哪醇酯 5-辛基-1,3-二(噻吩-2-基)-4H-噻吩并[3,4-c]吡咯-4,6(5H)-二酮 5-苯基-2,2'-联噻吩 5-溴5'-辛基-2,2'-联噻吩 5-溴-5′-己基-2,2′-联噻吩 5-溴-5'-甲酰基-2,2':5'2'-三噻吩 5-溴-3,3'-二己基-2,2'-联噻吩 5-溴-3'-癸基-2,2':5',2''-三联噻吩 5-溴-2,2-双噻吩 5-溴-2,2'-联噻吩-5'-甲醛 5-氯-5'-苯基-2,2'-联噻吩 5-氯-2,2'-联噻吩 5-正辛基-2,2'-并噻吩 5-己基-5'-乙烯基-2,2'-联噻吩 5-己基-2,2-二噻吩 5-全氟己基-5'-溴-2,2'-二噻吩 5-全氟己基-2,2′-联噻吩 5-乙酰基-2,2-噻吩基 5-乙氧基-2,2'-联噻吩 5-丙酰基-2,2-二噻吩