摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4′-methoxy-N-methyl-[1,1′-biphenyl]-2-carboxamide | 35158-67-9

中文名称
——
中文别名
——
英文名称
4′-methoxy-N-methyl-[1,1′-biphenyl]-2-carboxamide
英文别名
4'-methoxy-N-methyl-[1,1'-biphenyl]-2-carboxamide;4'-Methoxy-N-methyl-2-biphenylcarboxamid;4'-Methoxy-N-methylbiphenyl-2-carboxamid;2-(4-methoxyphenyl)-N-methylbenzamide
4′-methoxy-N-methyl-[1,1′-biphenyl]-2-carboxamide化学式
CAS
35158-67-9
化学式
C15H15NO2
mdl
——
分子量
241.29
InChiKey
LKDMZYWGTNDILK-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.6
  • 重原子数:
    18
  • 可旋转键数:
    3
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.13
  • 拓扑面积:
    38.3
  • 氢给体数:
    1
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

点击查看最新优质反应信息

文献信息

  • Unified Protocol for Fe-Based Catalyzed Biaryl Cross-Couplings between Various Aryl Electrophiles and Aryl Grignard Reagents
    作者:Lei Wang、Yi-Ming Wei、Yan Zhao、Xin-Fang Duan
    DOI:10.1021/acs.joc.9b00151
    日期:2019.5.3
    Ti(OEt)4/PhOM enabled a highly general iron-based catalyst system, which could efficiently catalyze the biaryl coupling reaction between various electrophiles (I, Br, Cl, OTs, OCONMe2, OSO2NMe2) and common or functionalized aryl Grignard reagents with high functional group tolerance. Selective couplings of aryl iodides and bromides over the corresponding oxygen-based electrophiles have been achieved, and
    常用的FeCl 3 / SIPr与Ti(OEt)4 / PhOM的组合可实现高度通用的基催化剂体系,该体系可有效催化各种亲电试剂(I,Br,Cl,OTs,OCONMe 2, OSO 2 NMe 2)和具有高官能团耐受性的常用或官能化芳基格氏试剂。已经实现了芳基化物和化物在相应的基于氧的亲电试剂上的选择性偶联,因此,通过正交偶联策略方便地合成了阿尼芬净的三联苯甲酸中间体。
  • Iron‐Electrocatalyzed C−H Arylations: Mechanistic Insights into Oxidation‐Induced Reductive Elimination for Ferraelectrocatalysis
    作者:Cuiju Zhu、Maximilian Stangier、João C. A. Oliveira、Leonardo Massignan、Lutz Ackermann
    DOI:10.1002/chem.201904018
    日期:2019.12.18
    precious 5d and 4d transition metals, such as iridium, palladium and rhodium. In contrast, the unique potential of less toxic Earth-abundant 3d metals has been underexplored. While iron is the most naturally abundant transition metal, its use in oxidative, organometallic C-H activation has faced major limitations due to the need for superstoichiometric amounts of corrosive, cost-intensive DCIB as the
    尽管取得了重大进展,但有机属 CH 转化仍以贵重的 5d 和 4d 过渡属为主,例如。相比之下,地球上资源丰富的毒性较小的 3d 属的独特潜力尚未得到充分开发。虽然是天然最丰富的过渡属,但由于需要超化学计量的腐蚀性、成本密集型 DCIB 作为牺牲氧化剂,其在氧化有机属 CH 活化中的使用面临重大限制。为了充分解决这些限制,我们在此描述了电合成与通过氧化诱导还原消除的催化CH活化的前所未有的合并。因此,通过可持续催化剂的作用,利用电作为良性氧化剂,电催化的CH芳基化反应在温和的反应温度下在足够的范围内完成。
  • Regioselective Dearomative Amidoximation of Nonactivated Arenes Enabled by Photohomolytic Cleavage of <i>N</i>‐nitrosamides
    作者:Pan‐Feng Yuan、Xie‐Tian Huang、Linhong Long、Tao Huang、Chun‐Lin Sun、Wei Yu、Li‐Zhu Wu、Hui Chen、Qiang Liu
    DOI:10.1002/anie.202317968
    日期:2024.2.19
    Abstract

    Dearomative spirocyclization reactions represent a promising means to convert arenes into three‐dimensional architectures; however, controlling the regioselectivity of radical dearomatization with nonactivated arenes to afford the spirocyclizative 1,2‐difunctionalization other than its kinetically preferred 1,4‐difunctionalization is exceptionally challenging. Here we disclose a novel strategy for dearomative 1,2‐ or 1,4‐amidoximation of (hetero)arenes enabled by direct visible‐light‐induced homolysis of N−NO bonds of nitrosamides, giving rise to various highly regioselective amidoximated spirocycles that previously have been inaccessible or required elaborate synthetic efforts. The mechanism and origins of the observed regioselectivities were investigated by control experiments and density functional theory calculations.

    摘要脱芳基螺环化反应是将烷烃转化为三维结构的一种很有前景的方法;然而,控制非活化烷烃脱芳基反应的区域选择性,以获得螺环化的 1,2-二官能度,而不是其动力学上偏好的 1,4-二官能度,却极具挑战性。在这里,我们揭示了一种新策略,即通过可见光直接诱导亚硝酰胺的 N-NO 键的均裂,实现(杂)烷的 1,2- 或 1,4- 化,从而产生各种高区域选择性的化螺环,而这些螺环以前是无法获得的,或者需要精心的合成工作。通过对照实验和密度泛函理论计算,研究了观察到的区域选择性的机理和起源。
  • CN114835599
    申请人:——
    公开号:——
    公开(公告)日:——
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫