Multielectron redox chemistry involving small molecules such as O2, H2O, N2, CO2, and CH4 is intrinsic to the chemical challenges surrounding sustainable, low-carbon energy generation and exploitation. Compounds with more than one metal reaction site facilitate this chemistry by providing both unique binding environments and combined redox equivalents. However, controlling the aggregation of metal cations is problematic, as both the primary coordination spheres of the metals and the metal–metal separations have to be defined carefully. We described recently a series of pyrrole-based macrocyclic ligands designed to manage metal aggregation and form molecular multimetallic complexes. In particular, we have shown that these compartmentalised Schiff-basecalixpyrroles generally form rigid Pacman complexes that prescribe well-defined, metallo microenvironments within the molecular cleft. This article will review the development of this chemistry and its context, and will highlight structural facets and reaction chemistry of metal complexes from across the periodic table.
涉及 O2、
H2O、N2、
CO2 和
CH4 等小分子的多电子氧化还原
化学是围绕可持续、低碳能源生产和开发的
化学挑战所固有的。具有多个
金属反应位点的化合物通过提供独特的结合环境和组合的氧化还原当量来促进这种
化学反应。然而,控制
金属阳离子的聚集是有问题的,因为
金属的主要配位层和
金属-
金属分离都必须仔细定义。我们最近描述了一系列基于
吡咯的大环
配体,旨在管理
金属聚集并形成分子多
金属配合物。特别是,我们已经证明,这些区室化的席夫碱杯
吡咯通常形成刚性的 Pacman 复合物,在分子裂隙内规定了明确的
金属微环境。本文将回顾这种
化学的发展及其背景,并将重点介绍整个元素周期表中
金属配合物的结构方面和反应
化学。