摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,5-anhydro-2,3-di-O-benzyl-D-glucitol | 176168-90-4

中文名称
——
中文别名
——
英文名称
1,5-anhydro-2,3-di-O-benzyl-D-glucitol
英文别名
(2R,3R,4S,5S)-2-(hydroxymethyl)-4,5-bis(phenylmethoxy)oxan-3-ol
1,5-anhydro-2,3-di-O-benzyl-D-glucitol化学式
CAS
176168-90-4
化学式
C20H24O5
mdl
——
分子量
344.408
InChiKey
KWMNAYQBQGSFPV-IYWMVGAKSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    128-130 °C
  • 沸点:
    518.9±50.0 °C(Predicted)
  • 密度:
    1.23±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    2
  • 重原子数:
    25
  • 可旋转键数:
    7
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.4
  • 拓扑面积:
    68.2
  • 氢给体数:
    2
  • 氢受体数:
    5

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    葡萄糖合成铜绿菌素298-A的2-羧基-6-羟基八氢吲哚核的环加氧变体
    摘要:
    报道了新的核心结构的设计和合成,该新的核心结构是来自d-葡萄糖的2-羧基-6-羟基八氢吲哚(Choi)的环加氧变体。Choi是一种刚性的双环非天然氨基酸,是约15种铜绿素酶天然化合物的核心结构。这些化合物是凝血酶,胰蛋白酶和VIIa因子抑制剂,Choi对它们的生物学活性很重要。2-羧基-6-羟基八氢吲哚的环氧化变体可以潜在地用作Choi的替代品,用于基于铜绿素酶的凝血酶抑制剂的设计和合成。
    DOI:
    10.1021/jo0507901
  • 作为产物:
    描述:
    1,5-anhydro-2,3-di-O-benzyl-4,6-O-benzylidene-D-glucitol硫酸 作用下, 以 甲醇 为溶剂, 以94%的产率得到1,5-anhydro-2,3-di-O-benzyl-D-glucitol
    参考文献:
    名称:
    葡萄糖合成铜绿菌素298-A的2-羧基-6-羟基八氢吲哚核的环加氧变体
    摘要:
    报道了新的核心结构的设计和合成,该新的核心结构是来自d-葡萄糖的2-羧基-6-羟基八氢吲哚(Choi)的环加氧变体。Choi是一种刚性的双环非天然氨基酸,是约15种铜绿素酶天然化合物的核心结构。这些化合物是凝血酶,胰蛋白酶和VIIa因子抑制剂,Choi对它们的生物学活性很重要。2-羧基-6-羟基八氢吲哚的环氧化变体可以潜在地用作Choi的替代品,用于基于铜绿素酶的凝血酶抑制剂的设计和合成。
    DOI:
    10.1021/jo0507901
点击查看最新优质反应信息

文献信息

  • Synthesis and Comparative Structure–Activity Study of Carbohydrate-Based Phenolic Compounds as α-Glucosidase Inhibitors and Antioxidants
    作者:Shota Machida、Saki Mukai、Rina Kono、Megumi Funato、Hiroaki Saito、Taketo Uchiyama
    DOI:10.3390/molecules24234340
    日期:——

    Twenty-one natural and unnatural phenolic compounds containing a carbohydrate moiety were synthesized and their structure–activity relationship (SAR) was evaluated for α-glucosidase inhibition and antioxidative activity. Varying the position of the galloyl unit on the 1,5-anhydro-d-glucitol (1,5-AG) core resulted in changes in the α-glucosidase inhibitory activity and notably, particularly strong activity was demonstrated when the galloyl unit was present at the C-2 position. Furthermore, increasing the number of the galloyl units significantly affected the α-glucosidase inhibition, and 2,3,4,6-tetra-galloyl-1,5-AG (54) and 2,3,4,6-tetra-galloyl-d-glucopyranose (61) exhibited excellent activities, which were more than 13-fold higher than the α-glucosidase inhibitory activity of acertannin (37). Moreover, a comparative structure-activity study suggested that a hemiacetal hydroxyl functionality in the carbohydrate core and a biaryl bond of the 4,6-O-hexahydroxydiphenoyl (HHDP) group, which are components of ellagitannins including tellimagrandin I, are not necessary for the α-glucosidase inhibitory activity. Lastly, the antioxidant activity increased proportionally with the number of galloyl units.

    合成了二十一种含有碳水化合物基团的天然和非天然酚类化合物,并评估了它们在α-葡萄糖苷酶抑制和抗氧化活性方面的结构-活性关系(SAR)。在1,5-脱氧-D-葡萄糖醇(1,5-AG)核心上改变没食子酸单元的位置导致了α-葡萄糖苷酶抑制活性的变化,特别是当没食子酸单元位于C-2位置时表现出明显的强活性。此外,增加没食子酸单元的数量显著影响了α-葡萄糖苷酶抑制作用,2,3,4,6-四没食子酸-1,5-AG(54)和2,3,4,6-四没食子酸-D-葡萄糖喃糖(61)表现出卓越的活性,其α-葡萄糖苷酶抑制活性比没食子酸(37)高出13倍以上。此外,一项比较结构-活性研究表明,碳水化合物核心中的半缩醛羟基官能团和4,6-O-六羟基二苯甲酰(HHDP)单元的双芳基键,包括tellimagrandin I在内的椰子酸鞣质并不是α-葡萄糖苷酶抑制活性所必需的。最后,抗氧化活性随没食子酸单元数量的增加而成比例增加。
  • A mild and efficient method for the selective cleavage of primary p-methoxybenzyl protecting group of saccharides by Co2(CO)8–Me2PhSiH–CO system
    作者:Peng-zhan Qian、Wang Yao、Lu-bai Huang、Xiang-bao Meng、Zhong-jun Li
    DOI:10.1016/j.tetlet.2015.07.051
    日期:2015.9
    A mild and efficient method to selectively cleave p-methoxybenzyl (PMB) ether with a catalytic amount of Co2(CO)8, hydrosilane and CO (1 atm) is presented. The cleavage reaction shows regioselectivity to primary O-PMB of a variety of permethoxybenzylated saccharides and chemoselectivity to O-Bn, sulfur-containing group and common ester protecting groups.
    提出了一种温和有效的方法,用催化量的Co 2(CO)8,氢硅烷和CO(1 atm)选择性裂解对甲氧基苄基(PMB)醚。裂解反应显示出各种过甲氧基苄基化的糖对伯O- PMB的区域选择性和对O - Bn ,含基团和常见的酯保护基的化学选择性。
  • Two-Directional Olefinic-Ester Ring-Closing Metathesis using Reduced Ti Alkylidenes. A Rapid Entry into Polycyclic Ether Skeletons
    作者:Yuan Zhang、Jon D. Rainier
    DOI:10.1021/ol8025439
    日期:2009.1.1
    The use of a reduced titanium ethylidene reagent In an efficient two-directional approach to polycyclic ether skeletons is described.
  • Dual action of acertannins as potential regulators of intracellular ceramide levels
    作者:Akiko Kamori、Atsushi Kato、Shota Miyawaki、Junna Koyama、Robert J. Nash、George W.J. Fleet、Daisuke Miura、Fumihiro Ishikawa、Isao Adachi
    DOI:10.1016/j.tetasy.2016.09.006
    日期:2016.12
    Derived from the genus maple (Acer), acertannins are a group of gallotannins which have a characteristic 1,5-anhydro-D-glucitol (1,5-AG) occupying the central core position in the tannic acid structure whose hydroxyl groups have one or more galloyl residues. We have synthesized all ten naturally-occurring acertannins and seven new acertannin derivatives from 1,5-AG. Side-by-side comparisons revealed that 2,4,6tri-O-galloy1-1,5-AG 21 (maplexin E) and maplexin F 22 (2,3,6-tri-O-galloyl-1,5-AG) were good inhibitors of ceramidase (CDase). In contrast, the core anhydrosugar 1,5-AG 12 itself and 3',4',5'-trimethoxy benzoyl derivatives 23-25 did not show CDase inhibition. Metabolic labelling experiments using NBD-hexanoic acid revealed that 50 mu M of 6-O-galloyl-1,5-AG 16 (Ginnalin B), 2,6-di-O-galloyl-1,5-AG 19 (Ginnalin A), and 4,6-di-O-galloyl-1,5-AG 4 increased intracellular NBD-labeled ceramide, by 2.3, 2.2, and 2.1-fold, respectively. It is noteworthy that these acertannins 16, 19, and 4 promoted ceramide synthase 3 (CERS3) gene expression. Acertannins, therefore, represent a new class of potential intracellular ceramide regulators exhibiting both CDase inhibition and ceramide synthase promotion. (C) 2016 Elsevier Ltd. All rights reserved.
  • Synthetic Studies on Sialoglycoconjugates 81: Synthesis of Positional Isomers of Sialyl Lewis X Epitope Containing 1-Deoxy-<scp>d</scp>Glucose in Place of<i>N</i>-Acetylglucosamine, and Their Inhibitory Activity to Selectin-Mediated Adhesion
    作者:Masahiro Yoshida、Takako Suzuki、Hideharu Ishida、Makoto Kiso、Akira Hasegawa
    DOI:10.1080/07328309608005435
    日期:1996.2
    Three sialyl-Le(X) epitope analogs, which carry fucose and alpha-sialyl-(2-->3)galactose residues at O-2 and O-3, O-3 and O-2, and O-4 and O-6 positions of 1-deoxy-D-glucose backbone, respectively, have been synthesized. Glycosylation of 1,5-anhydro-4,6-O-benzylidene-D-glucitol (1) or 1,5-anhydro-6-O-benzoyl-2,3-di-O-benzyl-D-glucitol (4) prepared from 1,5-anhydro-D-glucitol, with methyl 2,3,4-tri-O-benzyl- 1-thio-beta-L-fucopyranoside (5) using dimethyl(methylthio)sulfonium triflate (DMTST) as a promoter, afforded the corresponding fucosyl 1,5-anhydro-D-glucitol derivatives 7, 8 and 9. Glycosylation of 7, 8 or 10 derived from 9, with methyl O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosylonate)-(2-->3)-2,4,6-tri-O- 1-thio-beta-D-galactopyranoside (11) in the presence of DMTST gave the expected tetrasaccharide derivatives 12, 16 and 20. Hydrolysis of the benzylidene group in 12 and 16 gave compounds 13 and 17. Finally 13, 17 and 20 were transformed, by reductive removal of the benzyl groups, O-deacylation and subsequent hydrolysis of the methyl ester, into the sialyl-Le(X) epitope analogs 15, 19 and 22, respectively.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫