[EN] DRUG DELIVERY USING ELECTROCHEMICALLY-TRIGGERED BIODEGRADABLE ELECTROACTIVE MATERIALS<br/>[FR] ADMINISTRATION DE MÉDICAMENT AU MOYEN DE MATIÈRES ÉLECTROACTIVES BIODÉGRADABLES À DÉCLENCHEMENT PAR VOIE ÉLECTROCHIMIQUE
申请人:UNIV FLORIDA
公开号:WO2015143334A1
公开(公告)日:2015-09-24
Embodiments of the present disclosure provide for biodegradable electroactive materials, methods of making biodegradable electroactive material, methods of using biodegradable electroactive material, method of delivering a dopant such as a drug to a patient using the biodegradable electroactive material.
Enhanced Electrical Conductivity by Macromolecular Architecture: Hyperbranched Electroactive and Degradable Block Copolymers Based on Poly(ε-caprolactone) and Aniline Pentamer
We present macromolecular architecture design as a useful tool to enhance the conductivity of degradable polymers. Linear and hyperbranched copolymers with electrical conductivity and biodegradability were synthesized by an "A(2) + B-n (n=2, 3, 4)" strategy using carboxyl-capped aniline pen tamer (CCAP) and branched poly(epsilon-caprolactone)s (PCLs) by coupling reactions. A more hydrophilic surface and lower crystallinity of the doped emeraldine state of aniline pentamer (EM A P) copolymer was achieved compared with PCLs, and TGA results demonstrated that the CCAP contents in the copolymers were almost the same. The structure of the polymers was characterized by FT-IR. NMR, and SEC. Good electroactivity of the copolymers was confirmed by UV and cyclic voltammetry (CV), and CV showed three pairs of redox peaks. The hyperbranched copolymers had a higher conductivity than the linear ones. It is suggested that the higher conductivity of the hyperbranched copolymer is due to the ordered distribution of peripheral EMAP segments that more easily form a conductive network. Therefore, the conductivity of the polymers is improved and controlled by the macromolecular architecture.
Facile and Green Approach towards Electrically Conductive Hemicellulose Hydrogels with Tunable Conductivity and Swelling Behavior
A one-pot reaction to synthesize electrically conductive hemicellulose hydrogels (ECHHs) is developed via a facile and green approach in water and at ambient temperature. ECHHs were achieved by cross-linking O-acetyl-galactoglucomannan (AcGGM) with epichlorohydrin in the presence of conductive aniline pentamer (AP) and were confirmed by infrared spectroscopy (IR) and elemental analysis. All hydrogels had macro-porous structures, and the thermal stability of ECHHs was improved by the addition of AP. Hydrogel equilibrium swelling ratios (ESRs) varied from 13.7 to 11.4 and were regulated by cross-linker concentration. The ESRs can also be tuned from 9.6 to 6.0 by changing the AP content level from 10 to 40% (w/w) while simultaneously altering conductivity from 9.05 x 10(-9) to 1.58 X 10(-6) S/cm. ECHHs with controllable conductivity, tunable swelling behavior, and acceptable mechanical properties have great potential for biomedical applications, such as biosensors, electronic devices, and tissue engineering.
Biodegradable electroactive polymers for electrochemically-triggered drug delivery
作者:John G. Hardy、David J. Mouser、Netzahualcóyotl Arroyo-Currás、Sydney Geissler、Jacqueline K. Chow、Lindsey Nguy、Jong M. Kim、Christine E. Schmidt
DOI:10.1039/c4tb00355a
日期:——
We report biodegradable electroactive polymer (EAP)-based materials and their application as drug delivery devices.