A Novel Cycloaddition Reaction of α-Diazo-γ-amido Ketones Catalyzed by Rhodium(II) Acetate. Scope and Mechanistic Details of the Process
摘要:
alpha-Diazo ketones containing an amido group in the gamma-position have been found to undergo a novel rhodium(II)-catalyzed cycloaddition reaction. Intramolecular cyclization of the keto carbenoid onto the oxygen atom of the amide group generates a carbonyl ylide dipole as a transient species. This highly stabilized dipole does not readily undergo 1,3-dipolar cycloaddition but rather transfers a proton to produce a cyclic ketene N,O-acetal. The ketene acetal is unstable to moisture and upon standing is readily hydrolyzed to a gamma-keto delta-lactone and an amine. In the absence of any significant amount of water, the ketene N,O-acetal undergoes conjugate addition with the activated st-bond of the dipolarophile to give a zwitterion intermediate. The anionic portion of the zwitterion adds to the neighboring carbonyl group. This is followed by epoxide ring formation with charge dissipation leading to an amido-substituted spiro cyclopentyl epoxide. In certain cases a hydroxy lactone was also isolated and its formation can be attributed to the competitive hydrolysis of the zwitterionic intermediate. The Rh(II)-catalyzed reaction of the diazo ketoamide derived from N-benzylpiperidone with DMAD afforded two different types of cycloadducts. In addition to the spiro cyclopentyl epoxide, a product derived from trapping of the carbonyl ylide dipole was also obtained, thereby providing additional support for the proposed mechanism.
A Novel Cycloaddition Reaction of α-Diazo-γ-amido Ketones Catalyzed by Rhodium(II) Acetate. Scope and Mechanistic Details of the Process
摘要:
alpha-Diazo ketones containing an amido group in the gamma-position have been found to undergo a novel rhodium(II)-catalyzed cycloaddition reaction. Intramolecular cyclization of the keto carbenoid onto the oxygen atom of the amide group generates a carbonyl ylide dipole as a transient species. This highly stabilized dipole does not readily undergo 1,3-dipolar cycloaddition but rather transfers a proton to produce a cyclic ketene N,O-acetal. The ketene acetal is unstable to moisture and upon standing is readily hydrolyzed to a gamma-keto delta-lactone and an amine. In the absence of any significant amount of water, the ketene N,O-acetal undergoes conjugate addition with the activated st-bond of the dipolarophile to give a zwitterion intermediate. The anionic portion of the zwitterion adds to the neighboring carbonyl group. This is followed by epoxide ring formation with charge dissipation leading to an amido-substituted spiro cyclopentyl epoxide. In certain cases a hydroxy lactone was also isolated and its formation can be attributed to the competitive hydrolysis of the zwitterionic intermediate. The Rh(II)-catalyzed reaction of the diazo ketoamide derived from N-benzylpiperidone with DMAD afforded two different types of cycloadducts. In addition to the spiro cyclopentyl epoxide, a product derived from trapping of the carbonyl ylide dipole was also obtained, thereby providing additional support for the proposed mechanism.
Boyd,G.V.; Monteil,R.L., Journal of the Chemical Society. Perkin transactions I, 1978, p. 1338 - 1350
作者:Boyd,G.V.、Monteil,R.L.
DOI:——
日期:——
Rhodium(II) Catalyzed Cyclization of Diazo Thiocarbonyl Compounds for Heterocycloic Synthesis
作者:Albert Padwa、Frederic R. Kinder、William R. Nadler、Lin Zhi
DOI:10.3987/com-92-s29
日期:——
The mesoionic thioisomunchnone system was prepared from the rhodium(II) acetate catalyzed cyclization of a diazothioamide and was found to undergo smooth 1,3-dipolar cycloaddition with N-phenylmaleimide. In contrast to this system, the rhodium(II) reaction of an alpha-diazo-beta-oxo ester containing a thiocarbonyl group produced a cyclic thiocarbonyl ylide which extruded sulfur from a transient episulfide intermediate.
Auwers, Justus Liebigs Annalen der Chemie, 1896, vol. 292, p. 185