摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-(1-hydroxy-pentyl)-cyclohexane-carboxylic acid-(1) | 5133-37-9

中文名称
——
中文别名
——
英文名称
2-(1-hydroxy-pentyl)-cyclohexane-carboxylic acid-(1)
英文别名
2-(1-Hydroxy-pentyl)-cyclohexan-carbonsaeure-(1);2-(α-Oxy-n-amyl)-cyclohexan-carbonsaeure-(1);2-(1-Hydroxy-pentyl)-cyclohexancarbonsaeure;2-(Pentylol-(21))-cyclohexan-carbonsaeure-(1);2-(α-Oxy-n-amyl)-hexahydrobenzoesaeure;Dihydrosedanolsaeure;2-(1-Hydroxypentyl)cyclohexane-1-carboxylic acid
2-(1-hydroxy-pentyl)-cyclohexane-carboxylic acid-(1)化学式
CAS
5133-37-9
化学式
C12H22O3
mdl
——
分子量
214.305
InChiKey
ZCKCXVLMFOCXIY-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.8
  • 重原子数:
    15
  • 可旋转键数:
    5
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.92
  • 拓扑面积:
    57.5
  • 氢给体数:
    2
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

点击查看最新优质反应信息

文献信息

  • Berlingozzi; Lupo, Gazzetta Chimica Italiana, 1927, vol. 57, p. 260
    作者:Berlingozzi、Lupo
    DOI:——
    日期:——
  • The Traveling Agent Problem
    作者:Katsuhiro Moizumi、George Cybenko
    DOI:10.1007/pl00009883
    日期:2001.8
    This paper considers a sequencing problem which arises naturally in the scheduling of software agents. We are given n sites at which a certain task might be successfully performed. The probability of success is p(1) at the ith site and these probabilities are independent. Visiting site i and trying the task there requires time (or some other cost metric) t(1) whether successful or not. Latencies between sites (i) and (j) are l(ij), that is, the travel time between those two sites. Should the task be successfully completed at a site then any remaining sites do not need to be visited, The Traveling Agent Problem is to find the sequence which minimizes the expected time to complete the task. The general formulation of this problem is NP-Complete. However, if the latencies are constant we show that the problem can be solved in polynomial time by sorting the ratios t(1)/p(1) according to increasing value and visiting the sites in that order. This result then leads to an efficient algorithm when groups of sites form subnets in which latencies within a subnet are constant but can vary across subnets. We also study the case when there are deadlines for solving the problem in which case the goal is to maximize probability of success subject to satisfying the deadlines. Applications to mobile and intelligent agents are described.
查看更多