Synthesis and biological evaluation of 5-deazaisofolic acid, 5-deaza-5,6,7,8-tetrahydroisofolic acid, and their N9-substituted analogues
摘要:
Prompted by recent disclosures concerning the potent antitumor activities of 5-deaza-5,6,7,8-tetrahydrofolic acid and 5,10-dideaza-5,6,7,8-tetrahydrofolic acid (DDATHF), we have prepared 5-deazaisofolic acid (3a) and 5-deaza-5,6,7,8-tetrahydroisofolic acid (4a). Reductive condensation of 2,6-diamino-3,4-dihydro-4-oxopyrido[2,3-d]pyrimidine with di-tert-butyl N-(4-formylbenzoyl)-L-glutamate and subsequent deprotection with trifluoroacetic acid yielded 5-deazaisofolic acid in good yield. Catalytic hydrogenation of this analogue then gave 4a. The 9-CH3 and 9-CHO modifications of 3a and the 9-CH3 derivative of 4a were also synthesized. Each of the new analogues was evaluated with a variety of folate-requiring enzymes as well as MCF-7 cells in culture. Compound 4a had an IC50 of ca. 1-mu-M against MCF-7 cells and was nearly 100-fold less potent than DDATHF in this regard. The three oxidized isofolate analogues were all poor inhibitors of tumor cell growth.
Synthesis and biological evaluation of 5-deazaisofolic acid, 5-deaza-5,6,7,8-tetrahydroisofolic acid, and their N9-substituted analogues
摘要:
Prompted by recent disclosures concerning the potent antitumor activities of 5-deaza-5,6,7,8-tetrahydrofolic acid and 5,10-dideaza-5,6,7,8-tetrahydrofolic acid (DDATHF), we have prepared 5-deazaisofolic acid (3a) and 5-deaza-5,6,7,8-tetrahydroisofolic acid (4a). Reductive condensation of 2,6-diamino-3,4-dihydro-4-oxopyrido[2,3-d]pyrimidine with di-tert-butyl N-(4-formylbenzoyl)-L-glutamate and subsequent deprotection with trifluoroacetic acid yielded 5-deazaisofolic acid in good yield. Catalytic hydrogenation of this analogue then gave 4a. The 9-CH3 and 9-CHO modifications of 3a and the 9-CH3 derivative of 4a were also synthesized. Each of the new analogues was evaluated with a variety of folate-requiring enzymes as well as MCF-7 cells in culture. Compound 4a had an IC50 of ca. 1-mu-M against MCF-7 cells and was nearly 100-fold less potent than DDATHF in this regard. The three oxidized isofolate analogues were all poor inhibitors of tumor cell growth.
Synthesis and biological evaluation of 5-deazaisofolic acid, 5-deaza-5,6,7,8-tetrahydroisofolic acid, and their N9-substituted analogues
作者:Shyam K. Singh、Inderjit K. Dev、David S. Duch、Robert Ferone、Gary K. Smith、James H. Freisheim、John B. Hynes
DOI:10.1021/jm00106a021
日期:1991.2
Prompted by recent disclosures concerning the potent antitumor activities of 5-deaza-5,6,7,8-tetrahydrofolic acid and 5,10-dideaza-5,6,7,8-tetrahydrofolic acid (DDATHF), we have prepared 5-deazaisofolic acid (3a) and 5-deaza-5,6,7,8-tetrahydroisofolic acid (4a). Reductive condensation of 2,6-diamino-3,4-dihydro-4-oxopyrido[2,3-d]pyrimidine with di-tert-butyl N-(4-formylbenzoyl)-L-glutamate and subsequent deprotection with trifluoroacetic acid yielded 5-deazaisofolic acid in good yield. Catalytic hydrogenation of this analogue then gave 4a. The 9-CH3 and 9-CHO modifications of 3a and the 9-CH3 derivative of 4a were also synthesized. Each of the new analogues was evaluated with a variety of folate-requiring enzymes as well as MCF-7 cells in culture. Compound 4a had an IC50 of ca. 1-mu-M against MCF-7 cells and was nearly 100-fold less potent than DDATHF in this regard. The three oxidized isofolate analogues were all poor inhibitors of tumor cell growth.