Bisfunctionalized m-phenylene ethynylene imine oligomers were polymerized in the polar solvent acetonitrile, resulting in high-molecular weight poly(m-phenylene ethynylene imine)s. It is hypothesized that this polymerization, which proceeds through the reversible metathesis of imine bonds, is driven by the folding of the long m-phenylene ethynylene imine chains. Upon conducting the polymerization in a series of solvents in which the m-phenylene ethynylene oligomers exhibit different folding stabilities, it was possible to correlate the molecular weight of the resulting poly(m-phenylene ethynylene imine)s with the helical stability of the corresponding oligomers. The polymerization was also demonstrated to be reversible and responsive to solvent and temperature changes.
Bisfunctionalized m-phenylene ethynylene imine oligomers were polymerized in the polar solvent acetonitrile, resulting in high-molecular weight poly(m-phenylene ethynylene imine)s. It is hypothesized that this polymerization, which proceeds through the reversible metathesis of imine bonds, is driven by the folding of the long m-phenylene ethynylene imine chains. Upon conducting the polymerization in a series of solvents in which the m-phenylene ethynylene oligomers exhibit different folding stabilities, it was possible to correlate the molecular weight of the resulting poly(m-phenylene ethynylene imine)s with the helical stability of the corresponding oligomers. The polymerization was also demonstrated to be reversible and responsive to solvent and temperature changes.
Foldamer Structuring by Covalently Bound Macromolecules
作者:Koushik Ghosh、Jeffrey S. Moore
DOI:10.1021/ja2087163
日期:2011.12.14
We used fluorescence and electronic absorption spectroscopy to study the molecular weight dependence of macromolecule-induced folding in a chain-centered meta-phenylene ethynylene (mPE) oligomer. Analogous to the ability of intrinsically unstructured proteins (IUPs) to induce folding of globular proteins in cellular environments, we show that macromolecules attached to both ends of an mPE dodecamer induce the foldarner to collapse into a presumed helical conformation. The collapse is especially prominent once the macromolecule segments become larger than ca. 50 kDa. For sufficiently large macromolecules, the conformational structuring occurs even in solvents that normally denature the foldamer. Based on these findings, chain-centered foldamers might find use as models to investigate the fundamental macromolecular physics of IUPs.