摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-n-monobromobutoxyl-4'-((cholesteryloxy)carbonyl)azobenzene | 244005-51-4

中文名称
——
中文别名
——
英文名称
4-n-monobromobutoxyl-4'-((cholesteryloxy)carbonyl)azobenzene
英文别名
4-n-bromobutoxy-4'-[(cholesteryloxy)carbonyl]azobenzene;4-bromobutoxy-4'-[(cholesteryloxy)carbonyl]azobenzene;4-bromobutoxyl-4'((cholesteryloxy)carbonyl)azobenzene
4-n-monobromobutoxyl-4'-((cholesteryloxy)carbonyl)azobenzene化学式
CAS
244005-51-4
化学式
C44H61BrN2O3
mdl
——
分子量
745.884
InChiKey
ZLVRHMLCMPFITG-KJQVITPPSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    13.22
  • 重原子数:
    50.0
  • 可旋转键数:
    14.0
  • 环数:
    6.0
  • sp3杂化的碳原子比例:
    0.66
  • 拓扑面积:
    60.25
  • 氢给体数:
    0.0
  • 氢受体数:
    5.0

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    乙二胺4-n-monobromobutoxyl-4'-((cholesteryloxy)carbonyl)azobenzenesodium carbonate 作用下, 以 various solvent(s) 为溶剂, 反应 24.0h, 以43.3%的产率得到4-(2-aminoethylamino)butoxy-4'-[(cholesteryloxy)carbonyl]azobenzene
    参考文献:
    名称:
    Jung, Jong Hwa; Shinkai, Seiji, Journal of the Chemical Society. Perkin Transactions 2 (2001), 2000, # 12, p. 2393 - 2398
    摘要:
    DOI:
  • 作为产物:
    描述:
    胆固醇4-[(4-bromobutoxyphenyl)azo]azobenzoic acid4-二甲氨基吡啶N,N'-二环己基碳二亚胺 作用下, 以 二氯甲烷 为溶剂, 反应 4.0h, 以26%的产率得到4-n-monobromobutoxyl-4'-((cholesteryloxy)carbonyl)azobenzene
    参考文献:
    名称:
    通过使用加冠的胆固醇纳米管创建双二氧化硅纳米管。
    摘要:
    合成了新的基于冠的胆固醇基有机胶凝剂1-3,该化合物具有一个或两个胆固醇骨架作为手性聚集体形成位点,两个氨基作为酸性质子结合位点和一个冠状部分作为阳离子结合位点,并在有机溶剂中评价凝胶化能力。这些胶凝剂可以使1.0重量%以下的几种有机溶剂胶凝,表明1-3充当各种有机溶剂的通用胶凝剂。我们观察到1-3的乙酸或丙酸凝胶的CD光谱,以表征有机凝胶系统中的聚集模式。在乙酸凝胶1的CD光谱中,第一个棉花效应的正号表示偶氮苯生色团的偶极矩趋向于顺时针方向。另一方面,丙酸凝胶2和3 仅含一个胆固醇的部分对第一棉效应显示负号,强烈表明偶氮苯生色团的偶极矩朝向逆时针方向。1+乙酸凝胶的TEM图像显示出螺旋带状和管状结构。在凝胶相中以1-3作为模板进行四乙氧基硅烷(TEOS)的溶胶-凝胶缩聚。由1+乙酸凝胶获得的二氧化硅显示出具有200-1700nm宽度的螺旋带和具有恒定约560nm外径的二氧化硅的管状结构。
    DOI:
    10.1002/chem.200305008
点击查看最新优质反应信息

文献信息

  • Tailoring Drug Release Kinetics by the Design and Optimization of Substituents in Azobenzene Molecules in the Photosensitive Liposomal System
    作者:Yucheng Zhang、Shengyong Geng、Yubei Zhang、Bin Feng、Yao Xue、Takayo Ogawa、Yulu Wang、Satoshi Wada、Jin-Ye Wang
    DOI:10.1021/acs.langmuir.4c01422
    日期:——
    was clarified. We found that the charge and electrophilicity of substituents were two important factors (expressed as the characteristic time) that can precisely regulate the isomerization ratio in the liposomal system. There was an approximately linear correlation between the characteristic time of photoisomerization and the fitted first-order constant of photoinduced drug release rate. The photoinduced
    用于光敏脂质体药物载体的光敏部分,例如偶氮苯,由于其可逆的光异构化特性,在位点特异性智能治疗中显示出作为先进药物递送系统的优势。本工作合成了一系列4′位取代吡啶喹啉异喹啉三乙胺乙二胺的4位胆固醇功能化偶氮苯生物,并阐明了其分子结构与药物释放行为之间的关系。我们发现取代基的电荷和亲电性是可以精确调节脂质体系统异构化比例的两个重要因素(表示为特征时间)。光异构化特征时间与拟合的光致药物释放速率一阶常数之间存在近似线性相关。通过调整偶氮苯胆固醇生物4'位的取代基,可以在所需的时间和适当的量实现光诱导药物释放。
  • Helical Ribbon Aggregate Composed of a Crown-Appended Cholesterol Derivative Which Acts as an Amphiphilic Gelator of Organic Solvents and as a Template for Chiral Silica Transcription
    作者:Jong Hwa Jung、Hedeki Kobayashi、Mitsutoshi Masuda、Toshimi Shimizu、Seiji Shinkai
    DOI:10.1021/ja010508h
    日期:2001.9.1
    New crown-appended cholesterol-based organogelator 1, which has two cholesterol skeletons as a chiral aggregate-forming site, two amino groups as an acidic proton-binding site, and one crown moiety as a cation-binding site, was synthesized, and the gelation ability was evaluated in organic solvents, It can gelate acetic acid, acetonitrile, acetone, ethanol, 1-butanol, 1-hexanol, DMSO, and DMF under 1.0 wt %, indicating that 1 acts as a versatile gelator of various organic solvents. To characterize the aggregation mode in the organogel system, we observed a CD spectrum of the acetic acid gel 1. In the CD spectrum, the lambda (theta =0) value appears at 353 nm, which is the same as the absorption maximum lambda (max) = 353 nm. The positive sign for the first Cotton effect indicates that the dipole moments of azobenzene chromophores tend to orient in a clockwise direction. Very surprisingly, the TEM images of the 1 + acetic acid gel resulted in the helical ribbon and the tubular structures. Sol-gel polymerization of tetraethoxysilane was carried out using 1 in the gel phase. The silica obtained from the 1 + acetic acid gel showed the helical ribbon with 1700-1800-nm pitches and the tubular structure of the silica with similar to 560-nm outer diameter. As far as can be recognized, all the helicity possesses a right-handed helical motif. Since the exciton-coupling band of the organogel also shows R (right-handed) helicity, we consider that a microscopic helicity is reflected by a macroscopic helicity.
  • Jung, Jong Hwa; Ono, Yoshiyuki; Shinkai, Seiji, Journal of the Chemical Society. Perkin Transactions 2 (2001), 1999, # 7, p. 1289 - 1291
    作者:Jung, Jong Hwa、Ono, Yoshiyuki、Shinkai, Seiji
    DOI:——
    日期:——
  • Novel Vesicular Aggregates of Crown-Appended Cholesterol Derivatives Which Act as Gelators of Organic Solvents and as Templates for Silica Transcription
    作者:Jong Hwa Jung、Yoshiyuki Ono、Kazuo Sakurai、Masahito Sano、Seiji Shinkai
    DOI:10.1021/ja001623f
    日期:2000.9.1
    New diazacrown-appended cholesterol gelators 1 and 2 were synthesized, and their gelation ability was evaluated in organic solvents. Very surprisingly, 1 + acetic acid gel results in spherical vesicles with two distinct sizes 200 and 2500 nm in diameter. In particular, the smaller vesicles are linked linearly, which is considered to serve as a driving-force for gelation. In contrast, 2 has a multilayered tubular structure. To characterize their aggregation modes in the gel phase, the organogels were observed by CD spectroscopy. The CD spectrum of 1 + acetic acid gel exhibits a negative sign for the first Cotton effect, indicating that the dipole moments in the gelator aggregate orient into an anticlockwise direction. On the other hand, 2 exhibits a positive sign for the first Cotton effect, indicating that they orient into a clockwise direction. The results indicate that the aggregate of 2 is stabilized by intermolecular cholesterol-cholesterol and azobenzene-azobenzene interactions, whereas the CD sign from the aggregate of 1 is indicative of an intramolecular azobenzene-azobenzene interaction. The spherical vesicle structures of organogel 1 were successfully transcribed into silica structures by the sol-gel polymerization of tetraethoxysilane (TEOS) in the gel phase. The TEM observation established that the wall of the spherical silica obtained in the acidic conditions consists of the multilayered vesicle structure. On the other hand, addition of Pd(NO3)(2) changed the silica structure into fluffy globules with similar to 6000 nm in diameter. The EPMA observation established that Pd(II) ions are densely deposited on the surface of this globular silica. Hence, this process is useful as a new method to create metal catalytic sites on the silica support. These results indicate that the spherical multilayered structure of the organogel can be precisely transcribed into the silica structure. We thus believe that the sol-gel polymerization using molecular assembly templates strongly built in the organogel phase is a new strategy to create superstructured silica materials.
  • Sol–Gel Polycondensation of Tetraethoxysilane in a Cholesterol-Based Organogel System Results in Chiral Spiral Silica
    作者:Jong Hwa Jung、Yoshiyuki Ono、Seiji Shinkai
    DOI:10.1002/(sici)1521-3773(20000515)39:10<1862::aid-anie1862>3.0.co;2-3
    日期:2000.5.15
查看更多

同类化合物

(5β)-17,20:20,21-双[亚甲基双(氧基)]孕烷-3-酮 (5α)-2′H-雄甾-2-烯并[3,2-c]吡唑-17-酮 (3β,20S)-4,4,20-三甲基-21-[[[三(异丙基)甲硅烷基]氧基]-孕烷-5-烯-3-醇-d6 (25S)-δ7-大发酸 (20R)-孕烯-4-烯-3,17,20-三醇 (11β,17β)-11-[4-({5-[(4,4,5,5,5-五氟戊基)磺酰基]戊基}氧基)苯基]雌二醇-1,3,5(10)-三烯-3,17-二醇 齐墩果酸衍生物1 黄麻属甙 黄芪皂苷III 黄芪皂苷 II 黄芪甲苷 IV 黄芪甲苷 黄肉楠碱 黄果茄甾醇 黄杨醇碱E 黄姜A 黄夹苷B 黄夹苷 黄夹次甙乙 黄夹次甙乙 黄夹次甙丙 黄体酮环20-(乙烯缩醛) 黄体酮杂质EPL 黄体酮杂质1 黄体酮杂质 黄体酮杂质 黄体酮EP杂质M 黄体酮EP杂质G(RRT≈2.53) 黄体酮EP杂质F 黄体酮6-半琥珀酸酯 黄体酮 17alpha-氢过氧化物 黄体酮 11-半琥珀酸酯 黄体酮 麦角甾醇葡萄糖苷 麦角甾醇氢琥珀酸盐 麦角甾烷-6-酮,2,3-环氧-22,23-二羟基-,(2b,3b,5a,22R,23R,24S)-(9CI) 麦角甾烷-3,6,8,15,16-五唑,28-[[2-O-(2,4-二-O-甲基-b-D-吡喃木糖基)-a-L-呋喃阿拉伯糖基]氧代]-,(3b,5a,6a,15b,16b,24x)-(9CI) 麦角甾烷-26-酸,5,6:24,25-二环氧-14,17,22-三羟基-1-羰基-,d-内酯,(5b,6b,14b,17a,22R,24S,25S)-(9CI) 麦角甾-8-烯-3-醇 麦角甾-8,24(28)-二烯-26-酸,7-羟基-4-甲基-3,11-二羰基-,(4a,5a,7b,25S)- 麦角甾-7,22-二烯-3-酮 麦角甾-7,22-二烯-17-醇-3-酮 麦角甾-5,24-二烯-26-酸,3-(b-D-吡喃葡萄糖氧基)-1,22,27-三羟基-,d-内酯,(1a,3b,22R)- 麦角甾-5,22,25-三烯-3-醇 麦角甾-4,6,8(14),22-四烯-3-酮 麦角甾-1,4-二烯-3-酮,7,24-二(乙酰氧基)-17,22-环氧-16,25-二羟基-,(7a,16b,22R)-(9CI) 麦角固醇 麦冬皂苷D 麦冬皂苷D 麦冬皂苷 B