中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
—— | 4-(methoxycarbonyl)benzyl trans-1,3-butadiene-1-carbamate | 152839-68-4 | C14H15NO4 | 261.277 |
4-(羟甲基)苯甲酸甲酯 | 4-(methoxycarbonyl)benzyl alcohol | 6908-41-4 | C9H10O3 | 166.177 |
Creating artificial enzymes that catalyze arbitrary chemical reactions is challenging. Although computational approaches to this problem hold great promise, starting designs typically exhibit low efficiency and require extensive optimization through directed evolution. In this study, we chronicle the evolution of a modestly active, computationally designed Diels-Alderase into a proficient biocatalyst for an abiological [4+2] cycloaddition reaction. Biochemical and structural characterization of the evolved enzyme reveals the molecular origins of its enhanced efficiency. The close match between the experimental structure, which changed only subtly over the course of evolution, and the original design model is particularly notable. In addition to enhancing our understanding of the principles of enzymatic catalysis, these findings should aid future efforts to produce active enzymes more reliably.
创造能够催化任意化学反应的人工酶是具有挑战性的。虽然计算方法在解决这个问题上具有巨大的潜力,但起始设计通常表现出低效率,并需要通过定向进化进行广泛优化。在这项研究中,我们记录了一个适度活跃的、计算设计的Diels-Alderase酶的进化过程,将其转化为对非生物[4+2]环加成反应具有高效催化作用的生物催化剂。对进化酶的生化和结构特征的表征揭示了其增强效率的分子起源。实验结构与原始设计模型之间的密切匹配尤其值得注意,因为在进化过程中,实验结构只发生了微小的变化。除了增强我们对酶催化原理的理解外,这些发现还应该有助于未来生产更可靠的活性酶的努力。