Synthesis and Quantitative Structure−Activity Relationship of Fatty Acid Amide Hydrolase Inhibitors: Modulation at the N-Portion of Biphenyl-3-yl Alkylcarbamates
摘要:
Alkylcarbamic acid biphenyl-3-yl esters are a class of fatty acid amide hydrolase (FAAH) inhibitors that comprises cyclohexylcarbamic acid 3'-carbamoylbiphenyl-3-yl ester (URB597), a compound with analgesic, anxiolytic-like and antidepressant-like properties in rat and mouse models. Here, we extended the structure-activity relationships (SARs) for this class of compounds by replacing the cyclohexyl ring of the parent compound cyclohexylcarbamic acid biphenyl-3-yl ester (URB524) (FAAH IC50 = 63 nM) with a selected set of substituents of different size, shape, flexibility, and lipophilicity. Docking experiments and linear interaction energy (LIE) calculations indicated that the N-terminal group of O-arylcarbamates fits within the lipophilic region of the substrate-binding site, mimicking the arachidonoyl chain of anandamide. Significant potency improvements were observed for the beta-naphthylmethyl derivative 4q (IC50 = 5.3 nM) and its 3'-carbamoylbiphenyl-3-yl ester 4z (URB880, IC50 = 0.63 nM), indicating that shape complementarity and hydrogen bonds are crucial to obtain highly potent inhibitors.
Synthesis and Quantitative Structure−Activity Relationship of Fatty Acid Amide Hydrolase Inhibitors: Modulation at the N-Portion of Biphenyl-3-yl Alkylcarbamates
摘要:
Alkylcarbamic acid biphenyl-3-yl esters are a class of fatty acid amide hydrolase (FAAH) inhibitors that comprises cyclohexylcarbamic acid 3'-carbamoylbiphenyl-3-yl ester (URB597), a compound with analgesic, anxiolytic-like and antidepressant-like properties in rat and mouse models. Here, we extended the structure-activity relationships (SARs) for this class of compounds by replacing the cyclohexyl ring of the parent compound cyclohexylcarbamic acid biphenyl-3-yl ester (URB524) (FAAH IC50 = 63 nM) with a selected set of substituents of different size, shape, flexibility, and lipophilicity. Docking experiments and linear interaction energy (LIE) calculations indicated that the N-terminal group of O-arylcarbamates fits within the lipophilic region of the substrate-binding site, mimicking the arachidonoyl chain of anandamide. Significant potency improvements were observed for the beta-naphthylmethyl derivative 4q (IC50 = 5.3 nM) and its 3'-carbamoylbiphenyl-3-yl ester 4z (URB880, IC50 = 0.63 nM), indicating that shape complementarity and hydrogen bonds are crucial to obtain highly potent inhibitors.
In this work, we further investigated a class of carbamic cholinesterase inhibitors introduced in a previous paper (Rampa et al. J. Med. Chem. 1998, 41, 3976). Some new omega-[N-methyl-N-(3-alkylcarbamoyloxyphenyl)methyl]aminoalkoxyaryl analogues were designed, synthesized, and evaluated for their inhibitory activity against both acetyleholinesterase (AChE) and butyrylcholinesterase (BuChE). The structure of the lead compound (xanthostigmine) was systematically varied with the aim to optimize the different parts of the molecule. Moreover, such a structure-activity relationships (SAR) study was integrated with a kinetic analysis of the mechanism of AChE inhibition for two representative compounds. The structural modifications lead to a compound (12b) showing an IC50 value for the AChE inhibition of 0.32 +/- 0.09 nM and to a group of BuChE inhibitors also active at the nanomolar level, the most potent of which (15d) was characterized by an IC50 value of 3.3 +/- 0.4 nM. The kinetic analysis allowed for clarification of the role played by different molecular moieties with regard to the rate of AChE carbamoylation and the duration of inhibition. On the basis of the results presented here, it was concluded that the cholinesterase inhibitors of this class possess promising characteristics in view of a potential development as drugs for the treatment of Alzheimer's disease.