摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 1272378-29-6

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
1272378-29-6
化学式
C45H89N15O7
mdl
——
分子量
952.298
InChiKey
GTYBMRIWTLMGCF-CXWHUAPYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -3.13
  • 重原子数:
    67.0
  • 可旋转键数:
    42.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.8
  • 拓扑面积:
    411.86
  • 氢给体数:
    15.0
  • 氢受体数:
    15.0

反应信息

  • 作为产物:
    参考文献:
    名称:
    Peptide Dendrons as Thermal-Stability Amplifiers for Immunoglobulin G1 Monoclonal Antibody Biotherapeutics
    摘要:
    生物治疗药物如单克隆抗体(mAbs)在制药行业中占据重要份额,主要用于治疗癌症、皮肤疾病和免疫系统疾病等危及生命的慢性疾病。聚集、断裂、氧化和还原等不稳定性导致这些产品通常需要在低温(-80至-20°C)下储存。然而,在这些温度下可靠存储面临挑战,尤其是在发展中国家和欠发达国家。因此,最近人们对开发能够在较高温度(25至55°C)下保持稳定的配方产生了新的兴趣。大多数治疗性配方中含有盐、糖、氨基酸、表面活性剂和聚合物等辅料,以提供生物治疗药物的稳定性,但它们在高温下的有效性有限。本研究提出使用不同代际的肽树突状体来创建高温稳定的配方。在这些树突状体中,第三代赖氨酸树突状体L6被确定为提供对mAbs最高稳定性的材料,相关的分析技术如尺寸排阻色谱(SEC)、动态光散射(DLS)、纳米颗粒追踪分析(NTA)和圆二色谱(CD)均进行了验证。通过溶血活性测试确认了这些树突状体的生物相容性。通过基于表面等离子共振(SPR)的活性测定确认了树突状体与mAb活性之间不存在干扰。我们希望这项研究能促使人们利用这种高代树突状体来增强mAbs的热稳定性。
    DOI:
    10.1021/acs.bioconjchem.7b00389
点击查看最新优质反应信息

文献信息

  • [EN] A FORMULATION FOR STABILIZING BIO-THERAPEUTICS<br/>[FR] FORMULATION POUR LA STABILISATION D'AGENTS BIOLOGIQUES THÉRAPEUTIQUES
    申请人:INDIAN INSTITUTE TECH DELHI
    公开号:WO2018096552A1
    公开(公告)日:2018-05-31
    The present disclosure relates to a formulation comprising: a) a dendron of Formula I; b) at least one bio-therapeutic; c) at least one buffer; and d) at least one salt, wherein the bio-therapeutic to dendron molar ratio is in the range of 1:0.5-1:3. The dendron stabilizes the bio-therapeutic in the formulation at a temperature of up to 55 °C.
    本公开涉及一种配方,包括:a) 公式I的树状分子;b) 至少一种生物治疗药物;c) 至少一种缓冲剂;和d) 至少一种盐,其中生物治疗药物与树状分子的摩尔比在1:0.5至1:3的范围内。树状分子可以在高达55°C的温度下稳定配方中的生物治疗药物。
  • Tailoring the Supramolecular Structure of Guanidinylated Pullulan toward Enhanced Genetic Photodynamic Therapy
    作者:Jie Zhou、Aisha Roshan Mohamed Wali、Shengnan Ma、Yiyan He、Dong Yue、James Zhenggui Tang、Zhongwei Gu
    DOI:10.1021/acs.biomac.8b00273
    日期:2018.6.11
    In the progress of designing a gene carrier system, what is urgently needed is a balance of excellent safety and satisfactory efficiency. Herein, a straightforward and versatile synthesis of a cationic guanidine-decorated dendronized pullulan (OGG3P) for efficient genetic photodynamic therapy was proposed. OGG3P was able to block the mobility of DNA from a weight ratio of 2. However, G3P lacking guanidine residues could not block DNA migration until at a weight ratio of 15, revealing guanidination could facilitate DNA condensation via specific guanidinium-phosphate interactions. A zeta potential plateau (∼+23 mV) of OGG3P complexes indicated the nonionic hydrophilic hydroxyl groups in pullulan might neutralize the excessive detrimental cationic charges. There was no obvious cytotoxicity and hemolysis, but also enhancement of transfection efficiency with regard to OGG3P in comparison with that of native G3P in Hela and HEK293T cells. More importantly, we found that the uptake efficiency in Hela cells between OGG3P and G3P complexes was not markedly different. However, guanidination caused changes in uptake pathway and led to macropinocytosis pathway, which may be a crucial reason for improved transfection efficiency. After introducing a therapeutic pKillerRed-mem plasmid, OGG3P complexes achieved significantly enhanced KillerRed protein expression and ROS production under irradiation. ROS-induced cancer cells proliferation suppression was also confirmed. This study highlights the guanidine-decorated dendronized pullulan could emerge as a reliable nonviral gene carrier to specifically deliver therapeutic genes.
    在设计基因载体系统的过程中,迫切需要兼顾出色的安全性和令人满意的效率。本文提出了一种用于高效基因光动力疗法的阳离子装饰树枝化拉鲁兰(OGG3P)的直接、多功能合成方法。然而,缺乏残基的 G3P 在重量比为 15 时才能阻止 DNA 迁移,这表明化可通过特定的-磷酸相互作用促进 DNA 凝聚。OGG3P 复合物的 zeta 电位高原(∼+23 mV)表明,拉普兰中的非离子亲羟基可以中和过多的有害阳离子电荷。与原生 G3P 相比,OGG3P 在 Hela 和 HEK293T 细胞中没有明显的细胞毒性和溶血现象,而且还提高了转染效率。更重要的是,我们发现 OGG3P 和 G3P 复合物在 Hela 细胞中的吸收效率没有明显差异。然而,鸟苷酸化引起了摄取途径的改变,并导致了大吞噬途径,这可能是提高转染效率的关键原因。引入治疗性 pKillerRed-mem 质粒后,OGG3P 复合物在辐照条件下显著增强了 KillerRed 蛋白的表达和 ROS 的产生。ROS 诱导的癌细胞增殖抑制也得到了证实。这项研究表明,基装饰的树枝化拉鲁兰可以作为一种可靠的非病毒基因载体,特异性地传递治疗基因
  • Gelation and topochemical polymerization of peptide dendrimers
    作者:V. Haridas、Yogesh K. Sharma、Rhiannon Creasey、Srikanta Sahu、Christopher T. Gibson、Nicolas H. Voelcker
    DOI:10.1039/c0nj00544d
    日期:——
    A new class of peptide-based dendrons and dendrimers is presented that display unique vesicle-driven organogelation. We demonstrate the crosslinking of diacetylene-based dendrimers in the gel state, producing strongly fluorescent polydiacetylenes. The crosslinked gels crafted from peptide dendrimers may find practical use in various applications, including as scaffold materials in tissue engineering and for drug delivery.
    本文介绍了一类新型肽基树枝和树枝状聚合物,它们显示出独特的囊泡驱动有机凝胶化作用。我们展示了二乙炔基树枝状聚合物在凝胶状态下的交联,从而产生了强荧光聚二乙炔。由多肽树枝状聚合物制成的交联凝胶可用于各种实际用途,包括组织工程中的支架材料和药物输送。
  • Designer peptide dendrimers using click reaction
    作者:V. Haridas、Yogesh K. Sharma、Srikanta Sahu、Ram P. Verma、Sandhya Sadanandan、Bharat G. Kacheshwar
    DOI:10.1016/j.tet.2011.01.023
    日期:2011.3
    We designed and synthesized various peptide dendrimers using a 1,3-dipolar cycloaddition (Click) reaction. The dendritic structures reported here include symmetrical, asymmetrical, and cationic dendrimers with triazole, cystine, aromatic, aliphatic, and Lys-Asp dipeptide cores. The high chemoselectivity of the click reaction allowed us to synthesize good yields of high-purity protected and unprotected dendritic structures. Triazole is an excellent peptide bond mimic, which remains hydrolytically stable. Dendrimer 15a and the core unit 21 gelate in a mixture of organic solvents. We also demonstrated the versatility of the design by synthesizing various carbohydrate-based dendrimers. (C) 2011 Elsevier Ltd. All rights reserved.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸