The enantioselective copper-catalyzed oxidative desymmetrization for the synthesis of chiral α-substituted serine derivatives is reported. The combination of Cu(OTf)2/(R,R)-PhBOX catalyst system, N-bromosuccinimide, and MeOH enables us to provide chiral α-substituted serines from N-2-methylbenzoyl-protected 2-amino-1,3-diols through a simple procedure at room temperature under an air atmosphere. A
Compounds of the present invention, and pharmaceutically acceptable compositions thereof, are useful as modulators of ATP-Binding Cassette (“ABC”) transporters or fragments thereof, including Cystic Fibrosis Transmembrane Conductance Regulator (“CFTR”). The present invention also relates to methods of treating ABC transporter mediated diseases using compounds of the present invention.
Compounds of the present invention, and pharmaceutically acceptable compositions thereof, are useful as modulators of ATP-Binding Cassette (“ABC”) transporters or fragments thereof, including Cystic Fibrosis Transmembrane Conductance Regulator (“CFTR”). The present invention also relates to methods of treating ABC transporter mediated diseases using compounds of the present invention.
Compounds of the present invention, and pharmaceutically acceptable compositions thereof, are useful as modulators of ATP-Binding Cassette (“ABC”) transporters or fragments thereof, including Cystic Fibrosis Transmembrane Conductance Regulator (“CFTR”). The present invention also relates to methods of treating ABC transporter mediated diseases using compounds of the present invention.
Compounds of the present invention, and pharmaceutically acceptable compositions thereof, are useful as modulators of ATP-Binding Cassette (“ABC”) transporters or fragments thereof, including Cystic Fibrosis Transmembrane Conductance Regulator (“CFTC”). The present invention also relates to methods of treating ABC transporter mediated diseases using compounds of the present invention.