摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

argon dimer | 12595-59-4

分子结构分类

中文名称
——
中文别名
——
英文名称
argon dimer
英文别名
argon
argon dimer化学式
CAS
12595-59-4
化学式
Ar2
mdl
——
分子量
79.896
InChiKey
DPCOVKQVZLQSDJ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.0
  • 重原子数:
    2.0
  • 可旋转键数:
    0.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0.0
  • 氢给体数:
    0.0
  • 氢受体数:
    0.0

反应信息

  • 作为反应物:
    描述:
    argon dimer 以 neat (no solvent) 为溶剂, 生成
    参考文献:
    名称:
    Electronically stimulated sputtering and luminescence from solid argon
    摘要:
    DOI:
    10.1103/physrevb.37.1455
  • 作为产物:
    描述:
    以 gas 为溶剂, 生成 argon dimer
    参考文献:
    名称:
    通过激光诱导分子排列研究稀有气体范德华二聚体的极化率各向异性
    摘要:
    利用强非共振激光场和诱导偶极矩之间的相互作用的分子排列技术应用于同核稀有气体二聚体 Rg2(Rg=Ar、Kr 和 Xe)。通过库仑爆炸 Rg2 和通过测量碎片离子的角分布来研究对齐程度。在相同的激光场峰值强度下,取向度≪cos2θ≫按Ar2、Kr2和Xe2的顺序变大,反映了它们的极化率各向异性Δα的数量级。以 I2 分子为参考,Ar2、Kr2 和 Xe2 的 Δα 估计分别为 0.5、0.7 和 1.3 A3。
    DOI:
    10.1063/1.1608851
点击查看最新优质反应信息

文献信息

  • Ar2 excimer emission from a laser-heated plasma in a high-pressure argon gas
    作者:A. Takahashi、T. Okada、T. Hiyama、M. Maeda、K. Uchino、R. Nohdomi、H. Mizoguchi
    DOI:10.1063/1.1334656
    日期:2000.12.18
    scheme to establish a practical Ar2 excimer laser operating at 128 nm. In this scheme, electrons generated by preionization of Ar gas at high pressure were heated by intense pulsed CO2 laser radiation. The resultant high-density plasma in the high-pressure Ar gas was used to create excited Ar dimers. In the experiment, a CO2 laser beam from a transversely excited atmospheric CO2 laser was focused on
    我们研究了一种泵浦方案,以建立在 128 nm 下工作的实用 Ar2 准分子激光器。在该方案中,高压下 Ar 气体预电离产生的电子被强脉冲 CO2 激光辐射加热。在高压 Ar 气体中产生的高密度等离子体用于产生激发的 Ar 二聚体。在实验中,来自横向激发的大气 激光器的 激光束在 2 MPa 压力的 Ar 气体中聚焦在一条长 100 毫米的窄线上。仅当 Ar 被预电离时才观察到真空紫外 (VUV) 信号,并且 VUV 信号被识别为来自以 128 nm 为中心的光谱特征的 Ar2 准分子的发射。
  • Fenn, John B., Journal of Chemical Physics, 1981, vol. 75, p. 5355 - 5361
    作者:Fenn, John B.
    DOI:——
    日期:——
  • Electron beam fluorescence spectrometry of internal state populations in nozzle beams of nitrogen and nitrogen/rare gas mixtures
    作者:M. Faubel、E. R. Weiner
    DOI:10.1063/1.442103
    日期:1981.7.15
    Rotational level populations of N2 were measured downstream from the skimmer in beams of pure N2 and in mixtures of N2 with He, Ne, and Ar expanded from room temperature nozzles. The range of p0D was from 5 to 50 Torr cm. The formation of dimers and higher condensates of beam species was monitored during the runs. The effect of condensation energy release on rotational populations and parallel temperatures was readily observed. Two different methods for evaluating the rotational population distributions were compared. One method is based on a dipole-excitation model and the other on an excitation matrix obtained empirically. Neither method proved clearly superior. Both methods indicated nonequilibrium rotational populations for all of our room temperature nozzle expansion conditions. Much of the nonequilibrium character appears to be due to the behavior of the K = 2 and K = 4 levels, which may be accounted for in terms of the rotational energy level spacing. In particular, the overpopulation of the K = 4 level is explained by a near-resonant transfer of rotational energy between molecules in the K = 6 and K = 0 states, to give two molecules in the K = 4 state. Rotational and vibrational temperatures were determined for pure N2 beams from nozzles heated up to 1700 °K. The heated nozzle experiments indicated a 40% increase in the rotational collision number between 300 and 1700 °K.
  • Electron beam excited mixtures of O<sub>2</sub> in argon. III. Energy transfer to O<sub>2</sub> and O<sub>3</sub>
    作者:J. W. Keto、C. F. Hart、Chien‐Yu Kuo
    DOI:10.1063/1.441687
    日期:1981.4.15
    We report here measurements of the reaction rates for quenching of Ar*2 (3Σ+u) and charge transfer from Ar+2 to O2 and O3. These rates have been measured in electron beam excited mixtures of argon and oxygen as a function of argon pressures from 500 to 11 000 Torr with partial pressures of oxygen varying from 50 to 172 mTorr. Interpreting our measured loss rates as resulting from energy transfer to both O2 and O3 we extract bimolecular rate coefficients for excitation transfer from Ar*2 of 4.6±2.6×10&lt;u−11 cm3 sec−1 and 4.6±0.6×10−9 cm3 sec−1 to O2 and O3, respectively. For charge transfer from Ar+2 to O2 we extract a bimolecular rate and a termolecular rate of 8±6×10−11 cm3 sec−1 and 9±2×10 −31 cm6 sec−1;and for Ar+2 to O3 we obtain rates of 5±3×10−9 cm3 sec−1 and 4.0±0.8×10−29 cm6 sec−1. Because we extract the contribution to the reaction rates by O3 we obtain significantly smaller energy transfer rates to O2 than earlier workers.
  • Optogalvanic spectrum of Ar excimers in a dc discharge with supersonic expansion
    作者:P. Dubé、M.J. Kiik、B.P. Stoicheff
    DOI:10.1016/0009-2614(95)00057-b
    日期:1995.3
    Optogalvanic spectra have been obtained arising from transitions between electronically excited states of excimers formed in a de discharge with supersonic expansion. In this method, tunable cw laser radiation is incident on the discharge while optogalvanic signals are measured directly across the discharge electrodes. The primary advantage of the method is its high sensitivity, as known in atomic spectroscopy. As an example, an optogalvanic spectrum of the (IIg)-I-3 <-- (3) Sigma(u)(+) transition of Ar-2* near 990 nm is shown.
查看更多

同类化合物

()-2-(5-甲基-2-氧代苯并呋喃-3(2)-亚乙基)乙酸乙酯 (甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (反式)-4-壬烯醛 (双(2,2,2-三氯乙基)) (乙腈)二氯镍(II) (乙基N-(1H-吲唑-3-基羰基)ethanehydrazonoate) (βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (±)17,18-二HETE (±)-辛酰肉碱氯化物 (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (s)-2,3-二羟基丙酸甲酯 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 ([2-(萘-2-基)-4-氧代-4H-色烯-8-基]乙酸) ([1-(甲氧基甲基)-1H-1,2,4-三唑-5-基](苯基)甲酮) (Z)-5-辛烯甲酯 (Z)-4-辛烯醛 (Z)-4-辛烯酸 (Z)-3-[[[2,4-二甲基-3-(乙氧羰基)吡咯-5-基]亚甲基]吲哚-2--2- (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-(-)-5'-苄氧基苯基卡维地洛 (S)-(-)-2-(α-(叔丁基)甲胺)-1H-苯并咪唑 (S)-(-)-2-(α-甲基甲胺)-1H-苯并咪唑 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-(+)-5,5'',6,6'',7,7'',8,8''-八氢-3,3''-二叔丁基-1,1''-二-2-萘酚,双钾盐 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-盐酸沙丁胺醇 (S)-溴烯醇内酯 (S)-氨氯地平-d4 (S)-氨基甲酸酯β-D-O-葡糖醛酸 (S)-8-氟苯并二氢吡喃-4-胺 (S)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (S)-4-(叔丁基)-2-(喹啉-2-基)-4,5-二氢噁唑 (S)-4-氯-1,2-环氧丁烷 (S)-3-(((2,2-二氟-1-羟基-7-(甲基磺酰基)-2,3-二氢-1H-茚满-4-基)氧基)-5-氟苄腈 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-3-(2-(二氟甲基)吡啶-4-基)-7-氟-3-(3-(嘧啶-5-基)苯基)-3H-异吲哚-1-胺 (S)-2-(环丁基氨基)-N-(3-(3,4-二氢异喹啉-2(1H)-基)-2-羟丙基)异烟酰胺 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-2-N-Fmoc-氨基甲基吡咯烷盐酸盐 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (SP-4-1)-二氯双(喹啉)-钯 (SP-4-1)-二氯双(1-苯基-1H-咪唑-κN3)-钯