摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-(benzylamino)-N-hydroxypropanamide | 23573-92-4

中文名称
——
中文别名
——
英文名称
3-(benzylamino)-N-hydroxypropanamide
英文别名
3-(benzylamino)propanehydroxamic acid;3-(Benzylamino)propionohydroxamic acid monohydrochloride
3-(benzylamino)-N-hydroxypropanamide化学式
CAS
23573-92-4
化学式
C10H14N2O2
mdl
——
分子量
194.233
InChiKey
PFEWRCHYOZKKDK-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0
  • 重原子数:
    14
  • 可旋转键数:
    5
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.3
  • 拓扑面积:
    61.4
  • 氢给体数:
    3
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    3-(n-苄胺)丙酸甲酯盐酸羟胺 、 potassium hydroxide 作用下, 以 甲醇 为溶剂, 反应 5.0h, 以72%的产率得到3-(benzylamino)-N-hydroxypropanamide
    参考文献:
    名称:
    基于四氢异喹啉的组蛋白脱乙酰基酶8选择性抑制剂的设计,合成和生物学评估
    摘要:
    组蛋白脱乙酰基酶8(HDAC8)是用于多种治疗应用的有希望的药物靶标。在这里,我们描述了基于C1取代的四氢异喹啉(TIQ)的新型HDAC8抑制剂系列的建模,设计,合成和生物学评估。配体结合后熵损失的最小化以及结合位点独特的HDAC8“开放”构象的使用产生了成功的策略,可同时提高HDAC8的效力和选择性。基于TIQ的3g和3n分别比HDAC1表现出最高的82和55 nM HDAC8效能以及330倍和135倍的选择性。与其他I类同工型的选择性相当或更好,而II类HDAC同工型HDAC6的抑制在10μM下低于50%。3g和3g的细胞毒性3n个在神经母细胞瘤细胞系中进行了评价,并3N显示类似或比PCI-34051的更好的浓度依赖性细胞毒性。在SH-SY5Y细胞中证实了3g和3n的选择性,因为它们都不增加组蛋白H3和α-微管蛋白的乙酰化。新型TIQ化学型的发现为开发用于治疗应用的HDAC8选择性抑制剂铺平了道路。
    DOI:
    10.1021/acsmedchemlett.7b00126
点击查看最新优质反应信息

文献信息

  • Controlling Plasma Stability of Hydroxamic Acids: A MedChem Toolbox
    作者:Paul Hermant、Damien Bosc、Catherine Piveteau、Ronan Gealageas、BaoVy Lam、Cyril Ronco、Matthieu Roignant、Hasina Tolojanahary、Ludovic Jean、Pierre-Yves Renard、Mohamed Lemdani、Marilyne Bourotte、Adrien Herledan、Corentin Bedart、Alexandre Biela、Florence Leroux、Benoit Deprez、Rebecca Deprez-Poulain
    DOI:10.1021/acs.jmedchem.7b01444
    日期:2017.11.9
    Hydroxamic acids are outstanding zinc chelating groups that can be used to design potent and selective metalloenzyme inhibitors in various therapeutic areas. Some hydroxamic acids display a high plasma clearance resulting in poor in vivo activity, though they may be very potent compounds in vitro. We designed a 57-member library of hydroxamic acids to explore the structure–plasma stability relationships
    异羟肟酸是杰出的锌螯合基团,可用于设计各种治疗领域中的有效和选择性金属酶抑制剂。一些异羟肟酸显示出较高的血浆清除率,导致体内活性差,尽管它们在体外可能是非常有效的化合物。我们设计了一个由57名成员组成的异羟肟酸文库,以探索这些系列中结构与血浆的稳定性关系,并确定哪些酶和哪些药效团对血浆稳定性至关重要。芳基酯酶和羧酸酯酶被确定为异羟肟酸的主要代谢酶。最后,我们建议引入或删除结构特征以提高稳定性。因此,这项工作提供了第一个药物化学工具箱(实验程序和结构指导),用于评估和控制异羟肟酸的血浆稳定性,并充分发挥其作为体内药理探针和治疗剂的潜力。这项研究与临床前开发特别相关,因为它允许获得在人和啮齿动物模型中同样稳定的化合物。
  • Potential Hypotensive Compounds: Substituted 3-Aminopropionates and 3-Aminopropionohydroxamic Acids
    作者:D.F. Biggs、R.T. Coutts、M.L. Selley、G.A. Towill
    DOI:10.1002/jps.2600611109
    日期:1972.11
  • Design, Synthesis, and Biological Evaluation of Tetrahydroisoquinoline-Based Histone Deacetylase 8 Selective Inhibitors
    作者:Taha Y. Taha、Shaimaa M. Aboukhatwa、Rachel C. Knopp、Naohiko Ikegaki、Hazem Abdelkarim、Jayaprakash Neerasa、Yunlong Lu、Raghupathi Neelarapu、Thomas W. Hanigan、Gregory R. J. Thatcher、Pavel A. Petukhov
    DOI:10.1021/acsmedchemlett.7b00126
    日期:2017.8.10
    Histone deacetylase 8 (HDAC8) is a promising drug target for multiple therapeutic applications. Here, we describe the modeling, design, synthesis, and biological evaluation of a novel series of C1-substituted tetrahydroisoquinoline (TIQ)-based HDAC8 inhibitors. Minimization of entropic loss upon ligand binding and use of the unique HDAC8 “open” conformation of the binding site yielded a successful
    组蛋白脱乙酰基酶8(HDAC8)是用于多种治疗应用的有希望的药物靶标。在这里,我们描述了基于C1取代的四氢异喹啉(TIQ)的新型HDAC8抑制剂系列的建模,设计,合成和生物学评估。配体结合后熵损失的最小化以及结合位点独特的HDAC8“开放”构象的使用产生了成功的策略,可同时提高HDAC8的效力和选择性。基于TIQ的3g和3n分别比HDAC1表现出最高的82和55 nM HDAC8效能以及330倍和135倍的选择性。与其他I类同工型的选择性相当或更好,而II类HDAC同工型HDAC6的抑制在10μM下低于50%。3g和3g的细胞毒性3n个在神经母细胞瘤细胞系中进行了评价,并3N显示类似或比PCI-34051的更好的浓度依赖性细胞毒性。在SH-SY5Y细胞中证实了3g和3n的选择性,因为它们都不增加组蛋白H3和α-微管蛋白的乙酰化。新型TIQ化学型的发现为开发用于治疗应用的HDAC8选择性抑制剂铺平了道路。
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物