摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

[(2R,3R,4R,5R)-4-[tert-butyl(dimethyl)silyl]oxy-5-(2,4-dioxopyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methyl N-[[1-[(9Z,12Z)-octadeca-9,12-dienyl]triazol-4-yl]methyl]carbamate | 1268342-14-8

中文名称
——
中文别名
——
英文名称
[(2R,3R,4R,5R)-4-[tert-butyl(dimethyl)silyl]oxy-5-(2,4-dioxopyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methyl N-[[1-[(9Z,12Z)-octadeca-9,12-dienyl]triazol-4-yl]methyl]carbamate
英文别名
——
[(2R,3R,4R,5R)-4-[tert-butyl(dimethyl)silyl]oxy-5-(2,4-dioxopyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methyl N-[[1-[(9Z,12Z)-octadeca-9,12-dienyl]triazol-4-yl]methyl]carbamate化学式
CAS
1268342-14-8
化学式
C37H62N6O7Si
mdl
——
分子量
731.021
InChiKey
MIABPYKSUHHKQN-RDOWAUALSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    6.52
  • 重原子数:
    51
  • 可旋转键数:
    24
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.7
  • 拓扑面积:
    157
  • 氢给体数:
    3
  • 氢受体数:
    9

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    [(2R,3R,4R,5R)-4-[tert-butyl(dimethyl)silyl]oxy-5-(2,4-dioxopyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methyl N-[[1-[(9Z,12Z)-octadeca-9,12-dienyl]triazol-4-yl]methyl]carbamate2-氰乙基N,N-二异丙基氯亚磷酰胺N,N-二异丙基乙胺 作用下, 以 二氯甲烷 为溶剂, 反应 4.0h, 以50%的产率得到[(2R,3R,4R,5R)-4-[tert-butyl(dimethyl)silyl]oxy-3-[2-cyanoethoxy-[di(propan-2-yl)amino]phosphanyl]oxy-5-(2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methyl N-[[1-[(9Z,12Z)-octadeca-9,12-dienyl]triazol-4-yl]methyl]carbamate
    参考文献:
    名称:
    Versatile Site-Specific Conjugation of Small Molecules to siRNA Using Click Chemistry
    摘要:
    We have previously demonstrated that conjugation of small molecule ligands to small interfering RNAs (siRNAs) and anti-microRNAs results in functional siRNAs and antagomirs in vivo. Here we report on the development of an efficient chemical strategy to make oligoribonucleotide-ligand conjugates using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) or click reaction. Three click reaction approaches were evaluated for their feasibility and suitability for high-throughput synthesis: the CuAAC reaction at the monomer level prior to oligonucleotide synthesis, the solution-phase postsynthetic "click conjugation", and the "click conjugation" on an immobilized and cornpletely protected alkyne-oligonucleotide scaffold. Nucleosides bearing 5'-alkyne moieties were used for conjugation to the 5'-end of the oligonucleotide. Previously described 2'- and 3'-O-propargylated nucleosides were prepared to introduce the alkyne moiety to the 3' and 5' termini and to the internal positions of the scaffold. Azido-functionalized ligands bearing lipophilic long chain alkyls, cholesterol, oligoamine, and carbohydrate were utilized to study the effect of physicochemical characteristics of the incoming azide on click conjugation to the alkyne-oligonucleotide scaffold in solution and on immobilized solid support. We found that microwave-assisted click conjugation of azido-functionalized ligands to a fully protected solid-support bound alkyne-oligonucleotide prior to deprotection was the most efficient "click conjugation" strategy for site-specific, high-throughput oligonucleotide conjugate synthesis tested. The siRNA conjugates synthesized using this approach effectively silenced expression of a luciferase gene in a stably transformed HeLa cell line.
    DOI:
    10.1021/jo101761g
  • 作为产物:
    描述:
    参考文献:
    名称:
    Versatile Site-Specific Conjugation of Small Molecules to siRNA Using Click Chemistry
    摘要:
    We have previously demonstrated that conjugation of small molecule ligands to small interfering RNAs (siRNAs) and anti-microRNAs results in functional siRNAs and antagomirs in vivo. Here we report on the development of an efficient chemical strategy to make oligoribonucleotide-ligand conjugates using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) or click reaction. Three click reaction approaches were evaluated for their feasibility and suitability for high-throughput synthesis: the CuAAC reaction at the monomer level prior to oligonucleotide synthesis, the solution-phase postsynthetic "click conjugation", and the "click conjugation" on an immobilized and cornpletely protected alkyne-oligonucleotide scaffold. Nucleosides bearing 5'-alkyne moieties were used for conjugation to the 5'-end of the oligonucleotide. Previously described 2'- and 3'-O-propargylated nucleosides were prepared to introduce the alkyne moiety to the 3' and 5' termini and to the internal positions of the scaffold. Azido-functionalized ligands bearing lipophilic long chain alkyls, cholesterol, oligoamine, and carbohydrate were utilized to study the effect of physicochemical characteristics of the incoming azide on click conjugation to the alkyne-oligonucleotide scaffold in solution and on immobilized solid support. We found that microwave-assisted click conjugation of azido-functionalized ligands to a fully protected solid-support bound alkyne-oligonucleotide prior to deprotection was the most efficient "click conjugation" strategy for site-specific, high-throughput oligonucleotide conjugate synthesis tested. The siRNA conjugates synthesized using this approach effectively silenced expression of a luciferase gene in a stably transformed HeLa cell line.
    DOI:
    10.1021/jo101761g
点击查看最新优质反应信息

文献信息

  • Versatile Site-Specific Conjugation of Small Molecules to siRNA Using Click Chemistry
    作者:Takeshi Yamada、Chang Geng Peng、Shigeo Matsuda、Haripriya Addepalli、K. Narayanannair Jayaprakash、Md. Rowshon Alam、Kathy Mills、Martin A. Maier、Klaus Charisse、Mitsuo Sekine、Muthiah Manoharan、Kallanthottathil G. Rajeev
    DOI:10.1021/jo101761g
    日期:2011.3.4
    We have previously demonstrated that conjugation of small molecule ligands to small interfering RNAs (siRNAs) and anti-microRNAs results in functional siRNAs and antagomirs in vivo. Here we report on the development of an efficient chemical strategy to make oligoribonucleotide-ligand conjugates using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) or click reaction. Three click reaction approaches were evaluated for their feasibility and suitability for high-throughput synthesis: the CuAAC reaction at the monomer level prior to oligonucleotide synthesis, the solution-phase postsynthetic "click conjugation", and the "click conjugation" on an immobilized and cornpletely protected alkyne-oligonucleotide scaffold. Nucleosides bearing 5'-alkyne moieties were used for conjugation to the 5'-end of the oligonucleotide. Previously described 2'- and 3'-O-propargylated nucleosides were prepared to introduce the alkyne moiety to the 3' and 5' termini and to the internal positions of the scaffold. Azido-functionalized ligands bearing lipophilic long chain alkyls, cholesterol, oligoamine, and carbohydrate were utilized to study the effect of physicochemical characteristics of the incoming azide on click conjugation to the alkyne-oligonucleotide scaffold in solution and on immobilized solid support. We found that microwave-assisted click conjugation of azido-functionalized ligands to a fully protected solid-support bound alkyne-oligonucleotide prior to deprotection was the most efficient "click conjugation" strategy for site-specific, high-throughput oligonucleotide conjugate synthesis tested. The siRNA conjugates synthesized using this approach effectively silenced expression of a luciferase gene in a stably transformed HeLa cell line.
查看更多