摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 1334552-65-6

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
1334552-65-6
化学式
C14H15NO3S
mdl
——
分子量
277.344
InChiKey
BQPVPGLNJYVXQJ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.78
  • 重原子数:
    19.0
  • 可旋转键数:
    10.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    40.05
  • 氢给体数:
    0.0
  • 氢受体数:
    5.0

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    Clusters of ligands on dendrimer surfaces
    摘要:
    The development of methodology that is designed to allow a significant increase in the patterning and in the functionalization of the dendrimer is the ultimate goal of the research described here. Glycoside clusters based on TRIS were formed using click chemistry and were attached to PAMAM dendrimers. A series of dendrimers bearing tris-mannoside and an ethoxyethanol group was synthesized, and the binding interactions of these dendrimers with Concanavalin A were evaluated using inhibition ELISAs. The results of the inhibition ELISAs suggest that tris-mannoside clusters can replace individual sugars on the dendrimer without loss of function. Since tris-mannoside clustering allows for a redistribution of the dendrimers' surface functionalities, from this chemistry one can envision patterned dendrimers that incorporate multiple groups to increase the function and utility of the dendrimer. (c) 2011 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmcl.2011.03.100
  • 作为产物:
    参考文献:
    名称:
    Clusters of ligands on dendrimer surfaces
    摘要:
    The development of methodology that is designed to allow a significant increase in the patterning and in the functionalization of the dendrimer is the ultimate goal of the research described here. Glycoside clusters based on TRIS were formed using click chemistry and were attached to PAMAM dendrimers. A series of dendrimers bearing tris-mannoside and an ethoxyethanol group was synthesized, and the binding interactions of these dendrimers with Concanavalin A were evaluated using inhibition ELISAs. The results of the inhibition ELISAs suggest that tris-mannoside clusters can replace individual sugars on the dendrimer without loss of function. Since tris-mannoside clustering allows for a redistribution of the dendrimers' surface functionalities, from this chemistry one can envision patterned dendrimers that incorporate multiple groups to increase the function and utility of the dendrimer. (c) 2011 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmcl.2011.03.100
点击查看最新优质反应信息