Excitatory amino-acid receptor agonists. Synthesis and pharmacology of analogues of 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid
摘要:
We have previously proposed the existence of a lipophilic cavity of the 2-amino-3-(3-hydroxy-5-methylisoxazol4-yl)propionic acid (AMPA) receptor recognition site capable of accommodating alkyl substituents of limited size in the 5-position of the isoxazole ring. In order to indirectly elucidate the approximate extent of this proposed cavity we have synthesized and pharmacologically characterized a number of AMPA analogues. For most of these AMPA analogues, a positive correlation between AMPA receptor affinity and agonist effect was observed. The only exception was demethyl-AMPA (8a), which showed relatively high AMPA receptor affinity (IC50 = 0.27 mu M) but remarkably weak agonist potency (EC50 = 900 mu M). Whereas the ethyl analogue of AMPA (Et-AMPA) (IC50 = 0.030 mu M; EC50 = 2.3 mu M) has previously been shown to be slightly more potent than AMPA (IC50 = 0.040 mu M; EC50 = 3.5 mu M), substitutions of a propyl or a butyl group for the methyl group of AMPA to give 8b (IC50 = 0.090 mu M; EC50 = 5.0 mu M) or 8f (IC50 = 1.0 mu M; EC50 = 32 mu M), respectively, result in progressive loss of the AMPA agonist effect. Analogues containing larger groups, such as isopentyl (8e), 1-propylbutyl (8g), 2,2-dimethylpropyl (8h), or benzyl (14) groups, were very weak or totally inactive as AMPA receptor ligands.
Systems and methods for cardiac plexus neuromodulation
申请人:Tulavi Therapeutics, Inc.
公开号:US11446359B2
公开(公告)日:2022-09-20
Methods, devices and systems are described for decreasing the activity of the sympathetic nervous innervation to and from the lungs and the vessels supplying the lungs to treat pulmonary medical conditions such as asthma. In one embodiment, the method may involve advancing an intravascular instrument to a target location in a blood vessel within the intercostal vasculature to ablate either or both the sympathetic afferent and efferent nerves lying within the paravertebral gutter including the visceral fibers that travel to the cardiothoracic cavity and abdominopelvic viscera and the T1 to T4/5 sympathetic chain. In another embodiment, an intravascular instrument may be advanced to the bronchial vessels to ablate either or both the sympathetic afferent and efferent nerves in and around the posterior pulmonary plexus. In one embodiment the ablative agent is a neurolytic agent delivered in a gel. This approach may be utilized to treat other cardiac and pulmonary diseases.