A ruthenium-catalyzed [1,2]-Brook rearrangement involved dominosequence is presented to prepare highly functionalized silyloxy indenes with atomic- and step-economy. This domino reaction is triggered by acylsilane-directed C–H activation, and the aldehyde controlled the subsequent enol cyclization/Brook Rearrangement other than β–H elimination. The protocol tolerates a broad substitution pattern,
Studies into the Cp*Rh(III)-catalysed hydroarylation of alkenes with aryl acyl silanes led to the discovery of a new synthetic strategy to access unique silicon derived indene frameworks. Rather than protodemetalation of the metal enolate formed following insertion of an alkene into the aryl C–H bond, intramolecular aldolcondensation of the acyl silane occurred to generate a series of 2-formyl- and
A ruthenium-catalyzed C–H alkenylation of aroylsilanes with electron-deficient alkenes was developed, using acylsilane as the directing group. The mild reaction conditions enable the tolerance of a wide scope of functionalities such as OMe, F, Cl, Br and CF3, providing a convenient and highly effective method for the synthesis of styrene derivatives bearing acylsilane. Steroid and heterocycles such
Versatility in the Brook Rearrangement for the Selective Ring‐Opening of Three‐Membered Rings
作者:Coralie Tugny、Fa‐Guang Zhang、Ilan Marek
DOI:10.1002/chem.201805006
日期:2019.1.2
From a single α‐silylated carbinol intermediate, easily accessible by carbometallation of cyclopropenes, various scaffolds featuring a quaternary carbon stereocenter could be obtained selectively. The selectivity towards these different products was achieved by either changing the experimental conditions or the nature of the organometallic species involved.