作者:Suzanne S. Leung、Brian E. Padden、Eric J. Munson、David J.W. Grant
DOI:10.1021/js970250m
日期:1998.4
Previous studies have shown that aspartame in the solid state can exist as a hemihydrate which occurs in two different polymorphic forms (I and II). The present work shows that equilibration of either hemihydrate at 25 degrees C with water vapor at relative humidities greater than or equal to 58% or with liquid water produces a 2.5-hydrate. Upon subjecting each of these crystalline hydrates to increasing temperature, the same crystalline anhydrate is formed which thermally cyclizes at a higher temperature to form the known compound 3-(carboxymethyl)-6-benzyl-2,5-dioxopiperazine. The activation energy of the cyclization reaction appears to depend on the degree of crystallinity of the anhydrate that is formed at a lower temperature. On increasing the temperature of the 2.5-hydrate, a hemihydrate intervenes before the anhydrate is formed. This intervening hemihydrate is similar to the commercial form (II) of aspartame hemihydrate but exhibits greater amorphous character. The techniques employed were Karl Fischer titrimetry, powder X-ray diffractometry, differential scanning calorimetry, thermogravimetric analysis, solid-state C-13 nuclear magnetic resonance spectroscopy, and Fourier transform infrared absorption spectroscopy.