摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N,N'-di(p-nitrobenzoyl)-L-cystine | 5330-87-0

中文名称
——
中文别名
——
英文名称
N,N'-di(p-nitrobenzoyl)-L-cystine
英文别名
N,N'-bis-(4-nitro-benzoyl)-L-cystine;N,N'-Bis-(4-nitro-benzoyl)-L-cystin;Bz(4-NO2)-Cys(1)-OH.Bz(4-NO2)-Cys(1)-OH;(2R)-3-[[(2R)-2-carboxy-2-[(4-nitrobenzoyl)amino]ethyl]disulfanyl]-2-[(4-nitrobenzoyl)amino]propanoic acid
N,N'-di(p-nitrobenzoyl)-L-cystine化学式
CAS
5330-87-0
化学式
C20H18N4O10S2
mdl
——
分子量
538.516
InChiKey
UVYFOLWELOVJQB-HOTGVXAUSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    900.4±65.0 °C(Predicted)
  • 密度:
    1.590±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.8
  • 重原子数:
    36
  • 可旋转键数:
    11
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.2
  • 拓扑面积:
    275
  • 氢给体数:
    4
  • 氢受体数:
    12

安全信息

  • 海关编码:
    2930909090

SDS

SDS:83136b90211151a9c167ada69d4551b7
查看

反应信息

  • 作为产物:
    描述:
    L-胱氨酸4-硝基苯甲酰氯sodium hydroxide 作用下, 以 乙醚乙醇 为溶剂, 反应 24.0h, 以13%的产率得到N,N'-di(p-nitrobenzoyl)-L-cystine
    参考文献:
    名称:
    Anatomy of a Gel. Amino Acid Derivatives That Rigidify Water at Submillimolar Concentrations
    摘要:
    On the basis of suggestive X-ray data, 14 aroyl L-cystine derivatives were designed, synthesized, and examined for their ability to gelate water. Several members of this amino acid family are remarkably effective aqueous gelators (the best being one that can rigidify aqueous solutions at 0.25 mM, ca. 0.01%, in less than 30 s!). A few of the analogues separate from water as crystals, indicating a close relationship between gelation and crystallization. All effective gelators self-assemble into fibrous structures that entrain the solvent in the capillary spaces among them. Hydrogen-bonding sites on the compounds that might stabilize the fibers were identified from specific substitutions that replace a hydrogen donor with a methyl group, enhance the hydrogen-accepting ability of a carbonyl oxygen, or promote the hydrogen-donating, ability of an amide proton. The structural variations were characterized via minimal gelation concentrations and times, X-ray crystallography, light and electron microscopy, rheology, and calorimetry. The multiple techniques, applied to the diverse compounds, allowed an extensive search into the basis of gelation. It was learned, for example, that the compound with the lowest minimum gelator concentration and time also has one of the weakest gels (i.e., it has a low elastic modulus). This is attributed to kinetic effects that perturb the length of the fibers. It was also argued that pi/pi stacking, the carboxyl carbonyl (but not the carboxyl proton), and solubility factors all contribute to the stability of a fiber. Polymorphism also plays a role. Rheological studies at different temperatures show that certain gels are stable to a 1-Hz, 3-Pa oscillating shear stress at temperatures as high as 90 degreesC. Other gels have a "catastrophic" break at lower temperatures. Calorimetric data indicate a smooth transition from gel to sol as the temperature is increased. These and other issues are discussed in this "anatomy" of a gel.
    DOI:
    10.1021/ja0016811
点击查看最新优质反应信息

文献信息

  • Inoue, Rikagaku Kenkyusho Iho, 1929, vol. 8, p. 647,650
    作者:Inoue
    DOI:——
    日期:——
  • Anatomy of a Gel. Amino Acid Derivatives That Rigidify Water at Submillimolar Concentrations
    作者:Fredric M. Menger、Kevin L. Caran
    DOI:10.1021/ja0016811
    日期:2000.11.1
    On the basis of suggestive X-ray data, 14 aroyl L-cystine derivatives were designed, synthesized, and examined for their ability to gelate water. Several members of this amino acid family are remarkably effective aqueous gelators (the best being one that can rigidify aqueous solutions at 0.25 mM, ca. 0.01%, in less than 30 s!). A few of the analogues separate from water as crystals, indicating a close relationship between gelation and crystallization. All effective gelators self-assemble into fibrous structures that entrain the solvent in the capillary spaces among them. Hydrogen-bonding sites on the compounds that might stabilize the fibers were identified from specific substitutions that replace a hydrogen donor with a methyl group, enhance the hydrogen-accepting ability of a carbonyl oxygen, or promote the hydrogen-donating, ability of an amide proton. The structural variations were characterized via minimal gelation concentrations and times, X-ray crystallography, light and electron microscopy, rheology, and calorimetry. The multiple techniques, applied to the diverse compounds, allowed an extensive search into the basis of gelation. It was learned, for example, that the compound with the lowest minimum gelator concentration and time also has one of the weakest gels (i.e., it has a low elastic modulus). This is attributed to kinetic effects that perturb the length of the fibers. It was also argued that pi/pi stacking, the carboxyl carbonyl (but not the carboxyl proton), and solubility factors all contribute to the stability of a fiber. Polymorphism also plays a role. Rheological studies at different temperatures show that certain gels are stable to a 1-Hz, 3-Pa oscillating shear stress at temperatures as high as 90 degreesC. Other gels have a "catastrophic" break at lower temperatures. Calorimetric data indicate a smooth transition from gel to sol as the temperature is increased. These and other issues are discussed in this "anatomy" of a gel.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐