摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-[4-[(tetrahydropyran-2-yl)oxy]butyl]iminodibenzyl | 443309-22-6

中文名称
——
中文别名
——
英文名称
N-[4-[(tetrahydropyran-2-yl)oxy]butyl]iminodibenzyl
英文别名
11-[4-(Oxan-2-yloxy)butyl]-5,6-dihydrobenzo[b][1]benzazepine
N-[4-[(tetrahydropyran-2-yl)oxy]butyl]iminodibenzyl化学式
CAS
443309-22-6
化学式
C23H29NO2
mdl
——
分子量
351.489
InChiKey
IVOSIMIDUNGENE-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    5.3
  • 重原子数:
    26
  • 可旋转键数:
    6
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.48
  • 拓扑面积:
    21.7
  • 氢给体数:
    0
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    N-[4-[(tetrahydropyran-2-yl)oxy]butyl]iminodibenzyl4-甲基苯磺酸吡啶 作用下, 以 四氢呋喃甲醇 为溶剂, 以73%的产率得到4-(10,11-dihydrodibenzo[b,f]azepin-5-yl)butan-1-ol
    参考文献:
    名称:
    Design, Synthesis, and Evaluation of New Chemosensitizers in Multi-Drug-Resistant Plasmodium falciparum
    摘要:
    A series of new chemosensitizers (modulators) against chloroquine-resistant Plasmodium falciparum were designed and synthesized in an attempt to fabricate modulators with enhancing drug-resistant reversing efficacy and minimal side effects. Four aromatic amine ring systems-phenothiazine, iminodibenzyl, iminostilbene, and diphenylamine-were examined. Various tertiary amino groups including either noncyclic or cyclic aliphatic amines were introduced to explore the steric tolerance at the end of the side chain. The new compounds showed better drug-resistant reversing activity in chloroquine-resistant than in mefloquine-resistant cell lines and were generally more effective against chloroquine-resistant P. falciparum isolates from Southeast Asian (W2 and TM91C235) than those from South America (PC49 and RCS). Structure-activity relationship studies revealed that elongation of the alkyl side chain of the molecule retained the chemosensitizing activity, and analogues with four-carbon side chains showed superior activity. Furthermore, new modulators with phenothiazine ring exhibited the best chemosensitizing activity among the four different ring systems examined. Terminal amino function has limited steric tolerance as evidenced by the dramatic lose of the modulating activity, when the size of substituent at the amino group increases. The best new modulator synthesized in this study possesses all three optimized structural features, which consist of a phenothiazine ring and a pyrrolidinyl group joined by a four-carbon alkyl bridge. The fractional inhibitory concentration TIC) index of the best compound is 0.21, which is superior to that of verapamil (0.51), one of the best-known multi-drug-resistant reversing agents. Some of the analogues displayed moderate intrinsic in vitro antimalarial activity against a W-2 clone of P. falciparum.
    DOI:
    10.1021/jm010549o
  • 作为产物:
    描述:
    2-(4-氯丁氧基)四氢吡喃亚氨基二苄 在 sodium amide 作用下, 以 xylene 为溶剂, 以31%的产率得到N-[4-[(tetrahydropyran-2-yl)oxy]butyl]iminodibenzyl
    参考文献:
    名称:
    Design, Synthesis, and Evaluation of New Chemosensitizers in Multi-Drug-Resistant Plasmodium falciparum
    摘要:
    A series of new chemosensitizers (modulators) against chloroquine-resistant Plasmodium falciparum were designed and synthesized in an attempt to fabricate modulators with enhancing drug-resistant reversing efficacy and minimal side effects. Four aromatic amine ring systems-phenothiazine, iminodibenzyl, iminostilbene, and diphenylamine-were examined. Various tertiary amino groups including either noncyclic or cyclic aliphatic amines were introduced to explore the steric tolerance at the end of the side chain. The new compounds showed better drug-resistant reversing activity in chloroquine-resistant than in mefloquine-resistant cell lines and were generally more effective against chloroquine-resistant P. falciparum isolates from Southeast Asian (W2 and TM91C235) than those from South America (PC49 and RCS). Structure-activity relationship studies revealed that elongation of the alkyl side chain of the molecule retained the chemosensitizing activity, and analogues with four-carbon side chains showed superior activity. Furthermore, new modulators with phenothiazine ring exhibited the best chemosensitizing activity among the four different ring systems examined. Terminal amino function has limited steric tolerance as evidenced by the dramatic lose of the modulating activity, when the size of substituent at the amino group increases. The best new modulator synthesized in this study possesses all three optimized structural features, which consist of a phenothiazine ring and a pyrrolidinyl group joined by a four-carbon alkyl bridge. The fractional inhibitory concentration TIC) index of the best compound is 0.21, which is superior to that of verapamil (0.51), one of the best-known multi-drug-resistant reversing agents. Some of the analogues displayed moderate intrinsic in vitro antimalarial activity against a W-2 clone of P. falciparum.
    DOI:
    10.1021/jm010549o
点击查看最新优质反应信息

文献信息

  • Design, Synthesis, and Evaluation of New Chemosensitizers in Multi-Drug-Resistant <i>Plasmodium </i><i>f</i><i>alciparum</i>
    作者:Jian Guan、Dennis E. Kyle、Lucia Gerena、Quan Zhang、Wilbur K. Milhous、Ai J. Lin
    DOI:10.1021/jm010549o
    日期:2002.6.1
    A series of new chemosensitizers (modulators) against chloroquine-resistant Plasmodium falciparum were designed and synthesized in an attempt to fabricate modulators with enhancing drug-resistant reversing efficacy and minimal side effects. Four aromatic amine ring systems-phenothiazine, iminodibenzyl, iminostilbene, and diphenylamine-were examined. Various tertiary amino groups including either noncyclic or cyclic aliphatic amines were introduced to explore the steric tolerance at the end of the side chain. The new compounds showed better drug-resistant reversing activity in chloroquine-resistant than in mefloquine-resistant cell lines and were generally more effective against chloroquine-resistant P. falciparum isolates from Southeast Asian (W2 and TM91C235) than those from South America (PC49 and RCS). Structure-activity relationship studies revealed that elongation of the alkyl side chain of the molecule retained the chemosensitizing activity, and analogues with four-carbon side chains showed superior activity. Furthermore, new modulators with phenothiazine ring exhibited the best chemosensitizing activity among the four different ring systems examined. Terminal amino function has limited steric tolerance as evidenced by the dramatic lose of the modulating activity, when the size of substituent at the amino group increases. The best new modulator synthesized in this study possesses all three optimized structural features, which consist of a phenothiazine ring and a pyrrolidinyl group joined by a four-carbon alkyl bridge. The fractional inhibitory concentration TIC) index of the best compound is 0.21, which is superior to that of verapamil (0.51), one of the best-known multi-drug-resistant reversing agents. Some of the analogues displayed moderate intrinsic in vitro antimalarial activity against a W-2 clone of P. falciparum.
查看更多