water-compatible proline catalysts (4–6) derived from calixarene bearing a hydrophobic nature have been synthesised. It was found that the compound 4 was a highly efficient organocatalyst for aldol reactions occurred in the water. Under optimised reaction conditions, high yields (up to 82%), good enantioselectivities (ee up to 81%) and high diastereoselectivities (dr up to 91:9) were obtained.
Prolinamides of Aminouracils, Organocatalyst Modifiable by Complementary Modules
作者:Karen M. Ruíz-Pérez、Beatriz Quiroz-García、Marcos Hernández-Rodríguez
DOI:10.1002/ejoc.201800886
日期:2018.11.8
Prolinamide organocatalysts with aminouracils have the features of enhanced NH acidity, an additional hydrogen‐bond donor and the self‐assembly with complementary modules by Watson–Crick pairing. Each module affects the selectivity of the reaction and particularly 2,6‐diaminopyridine is beneficial to the selectivity in the reaction.
A short, practical synthesis of novel, unsymmetrical 4,5‘-bis-proline compounds has been achieved, highlighted by the application of an unprecedented samarium diiodide-driven regio- and diastereocontrolled reductive dimerization of N-acyloxyiminium ions generated from readily available 2-methoxy-5-silyloxymethyl-N-Boc pyrrolidines. The title proline dimers proved to be pertinent metal-free catalysts
[reaction: see text] Readily tunable and bifunctional L-prolinamides as novel organocatalysts have been developed, and their catalytic activities were evaluated in the direct asymmetric Aldolreactions of various aromatic aldehydes and cyclohexanone. High isolated yields (up to 94%), enantioselectivities (up to 99% ee), and anti-diastereoselectivities (up to 99:1) were obtained under the optimal conditions
Oxazoline-Substituted Prolinamide-Based Organocatalysts for the Direct Intermolecular Aldol Reaction between Cyclohexanone and Aromatic Aldehydes
作者:Simon Doherty、Julian G. Knight、Amy McRae、Ross W. Harrington、William Clegg
DOI:10.1002/ejoc.200700922
日期:2008.4
Oxazoline-substituted prolinamides catalyse the direct asymmetric aldol reaction between cyclohexanone and a range of aldehydes to give excellent conversions and enantioselectivities up to 84 % under optimum conditions. Reactions were highly substrate-specific with electron-deficient aldehydes giving the highest yields and ee values. The absolute configuration of the 4-chlorobenzaldehyde-derived product