摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

[4]cavitand | 350037-85-3

中文名称
——
中文别名
——
英文名称
[4]cavitand
英文别名
6,12,18,39-Tetramethyl-2,4,8,10,14,16,20,22-octaoxanonacyclo[21.15.1.124,38.05,36.07,34.011,32.013,30.017,28.019,26]tetraconta-1(39),5,7(34),11,13(30),17(28),18,23,26,31,35,38(40)-dodecaene;6,12,18,39-tetramethyl-2,4,8,10,14,16,20,22-octaoxanonacyclo[21.15.1.124,38.05,36.07,34.011,32.013,30.017,28.019,26]tetraconta-1(39),5,7(34),11,13(30),17(28),18,23,26,31,35,38(40)-dodecaene
[4]cavitand化学式
CAS
350037-85-3
化学式
C36H32O8
mdl
——
分子量
592.645
InChiKey
BLSSBXUOWNZTQD-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    8.4
  • 重原子数:
    44
  • 可旋转键数:
    0
  • 环数:
    9.0
  • sp3杂化的碳原子比例:
    0.33
  • 拓扑面积:
    73.8
  • 氢给体数:
    0
  • 氢受体数:
    8

反应信息

  • 作为反应物:
    描述:
    [4]cavitandN-溴代丁二酰亚胺(NBS)过氧化苯甲酰 作用下, 以 四氯化碳氯仿 为溶剂, 反应 4.0h, 以80%的产率得到
    参考文献:
    名称:
    Design and Preparation of Mesogenic Cavitands
    摘要:
    首次制备了介向空腔分子,它们形成了单轴无序柱状介质(Dhd)。已经确定了介质形成的结构要求:(i)宏环核心厚度低于5 Å,(ii)上缘有四个大的(3,4,5-三{[4-(十二烷氧基)苯基]氧基}苯甲酰)氧基基团。柱内分子的方向是随机的,排除了介质中分子尺寸的柱内空腔的形成。
    DOI:
    10.1135/cccc20041362
  • 作为产物:
    描述:
    溴氯甲烷Resorcin[4]arenecaesium carbonate 作用下, 以 N,N-二甲基甲酰胺 为溶剂, 反应 8.0h, 以83%的产率得到[4]cavitand
    参考文献:
    名称:
    Expanding Cavitand Chemistry: The Preparation and Characterization of [n]Cavitands withn≥4
    摘要:
    The preparation of cavitands composed of 4, 5, 6, and 7 aromatic subunits ([n]cavitands, n = 4-7) is described. The simple, two-step synthetic procedure utilized readily available starting materials (2-methylresorcinol and diethoxymethane). The two cavitand products having 4 and 5 aromatic subunits exhibited highly symmetric cone conformations, while the larger cavitands (n = 6 and 7) adopt conformations of lower symmetry, H-1 NMR spectroscopic studies of [6]cavitand and [7]cavitand revealed that these hosts undergo exchange between equivalent conformations at room temperature. The departure of these two cavitands from cone conformations is related to steric crowding on their Ar-O-CH2-O-Ar bridges and is predicted by simple molecular mechanics calculations (MM2 force field). X-ray diffraction studies on single crystals of the [4]cavitand, [5]cavitand, and [6]cavitand hosts afforded additional experimental support for these conclusions.
    DOI:
    10.1002/1521-3765(20010417)7:8<1637::aid-chem16370>3.0.co;2-x
点击查看最新优质反应信息

文献信息

  • Supramolecular surface plasmon resonance (SPR) sensors for organophosphorus vapor detection
    作者:Susan M. Daly、Michele Grassi、Devanand K. Shenoy、Franco Ugozzoli、Enrico Dalcanale
    DOI:10.1039/b615516b
    日期:——
    We synthesized cavitands containing COOH moieties at the upper rim of the cavity and evaluated the interaction between these cavitands and the sarin nerve gas simulant, dimethylmethylphosphonate (DMMP) using surface plasmon resonance (SPR) spectroscopy. The carboxylic acid group on the cavitand is expected to form a hydrogen bond with the PO group of the organophosphorus vapors. Films of these cavitands produced a rapid and reversible SPR response to low concentrations of DMMP. We observed concentration dependent sorption of the DMMP molecule into the COOH containing layer in the ppb to ppm range. Spin-cast films and Langmuir–Blodgett (LB) depositions of bilayer thick cavitand films produced identical SPR shifts upon exposure to DMMP. The sensitivity of the sensor was enhanced via LB deposition of multiple bilayers. Eight-layer-thick films of the COOH cavitand showed sensitivity to DMMP concentrations as low as 16 ppb. The orientation of the COOH group into or out of the cavity did not affect DMMP binding, but strongly influenced the water uptake. In both cases the molecular recognition event responsible for the DMMP uptake has been elucidated via crystal structure analyses of the complexes of COOH in/out cavitands with DMMP. Furthermore, we demonstrated that the COOH containing cavitand had an SPR sensitivity to DMMP higher than the standard fluoropolyol sensing layer, and that the cavitand layer was less prone to water vapor and alcohol interferences. Hence, cavitand layers containing a COOH moiety are promising for use as sensitive and specific sensors for nerve gas agents.
    我们在空腔上缘合成了含有 COOH 部分的空配体,并使用表面等离子体共振 (SPR) 光谱评估了这些空配体沙林神经毒气模拟物二甲基膦酸二甲酯 (DMMP) 之间的相互作用。空配体上的羧酸基团预计会与有机蒸气的 PO 基团形成氢键。这些空配体薄膜对低浓度的 DMMP 产生快速且可逆的 SPR 响应。我们观察到 DMMP 分子在 ppb 至 ppm 范围内吸附到含 COOH 层中的浓度依赖性。旋涂薄膜和双层厚空腔薄膜的朗缪尔-布洛杰特 (LB) 沉积在暴露于 DMMP 时产生相同的 SPR 位移。通过多个双层的LB沉积增强了传感器的灵敏度。八层厚的 COOH 空穴体薄膜显示出对低至 16 ppb 浓度的 DMMP 的敏感性。 COOH 基团进出空腔的方向不影响 DMMP 结合,但强烈影响的吸收。在这两种情况下,通过 COOH 输入/输出空穴与 DMMP 复合物的晶体结构分析,阐明了负责 DMMP 吸收的分子识别事件。此外,我们还证明,含有 COOH 的空穴配体DMMPSPR 敏感性高于标准含多元醇传感层,并且空穴配体层不易受到蒸气和酒精的干扰。因此,含有 COOH 部分的空穴层有望用作神经毒气剂的敏感和特异性传感器。
  • Inclusion of Cavitands and Calix[4]arenes into a Metallobridgedpara-(1H-Imidazo[4,5-f][3,8]phenanthrolin-2-yl)-Expanded Calix[4]arene
    作者:Enrique Botana、Eric Da Silva、Jordi Benet-Buchholz、Pablo Ballester、Javier de Mendoza
    DOI:10.1002/anie.200603180
    日期:2007.1
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-(+)-5,5'',6,6'',7,7'',8,8''-八氢-3,3''-二叔丁基-1,1''-二-2-萘酚,双钾盐 (S)-盐酸沙丁胺醇 (S)-溴烯醇内酯 (S)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2-N-Fmoc-氨基甲基吡咯烷盐酸盐 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-3-(叔丁基)-4-(2,6-二异丙氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-3,3''-双([[1,1''-联苯]-4-基)-[1,1''-联萘]-2,2''-二醇 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-2,2'',3,3''-四氢-6,6''-二-9-菲基-1,1''-螺双[1H-茚]-7,7''-二醇 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (6,6)-苯基-C61己酸甲酯 (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,5R)-3,3a,8,8a-四氢茚并[1,2-d]-1,2,3-氧杂噻唑-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aS,8aR)-2-(吡啶-2-基)-8,8a-二氢-3aH-茚并[1,2-d]恶唑 (3aS,3''aS,8aR,8''aR)-2,2''-环戊二烯双[3a,8a-二氢-8H-茚并[1,2-d]恶唑] (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (3S,3aR)-2-(3-氯-4-氰基苯基)-3-环戊基-3,3a,4,5-四氢-2H-苯并[g]吲唑-7-羧酸 (3R,3’’R,4S,4’’S,11bS,11’’bS)-(+)-4,4’’-二叔丁基-4,4’’,5,5’’-四氢-3,3’’-联-3H-二萘酚[2,1-c:1’’,2’’-e]膦(S)-BINAPINE (3-三苯基甲氨基甲基)吡啶 (3-[(E)-1-氰基-2-乙氧基-2-hydroxyethenyl]-1-氧代-1H-茚-2-甲酰胺) (2′′-甲基氨基-1,1′′-联苯-2-基)甲烷磺酰基铝(II)二聚体 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,4S)-Fmoc-4-三氟甲基吡咯烷-2-羧酸 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,3R)-3-(叔丁基)-2-(二叔丁基膦基)-4-甲氧基-2,3-二氢苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-二甲氧基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环