The cyclization of aza-beta(3)-tetrapeptides gives access to new CTP (cyclotetrapeptide) analogues. These stereocontrolled templates are assembled without any asymmetric synthesis. X-ray crystallographic structure and NMR analysis show that the macrocyclic scaffold is characterized by a fully cooperative intramolecular H-bond network, in sharp contrast with the nanotubular assemblies observed for beta(3)-cyclotetrapeptides. This folding property reduces considerably the polarity of aza-beta(3)-tetrapeptides and should be useful in addressing intracellular targets.
The cyclization of aza-beta(3)-tetrapeptides gives access to new CTP (cyclotetrapeptide) analogues. These stereocontrolled templates are assembled without any asymmetric synthesis. X-ray crystallographic structure and NMR analysis show that the macrocyclic scaffold is characterized by a fully cooperative intramolecular H-bond network, in sharp contrast with the nanotubular assemblies observed for beta(3)-cyclotetrapeptides. This folding property reduces considerably the polarity of aza-beta(3)-tetrapeptides and should be useful in addressing intracellular targets.
作者:Arnaud Salaün、Clémence Mocquet、Romain Perochon、Aurélien Lecorgne、Barbara Le Grel、Michel Potel、Philippe Le Grel
DOI:10.1021/jo8013963
日期:2008.11.7
The cyclization of aza-beta(3)-tetrapeptides gives access to new CTP (cyclotetrapeptide) analogues. These stereocontrolled templates are assembled without any asymmetric synthesis. X-ray crystallographic structure and NMR analysis show that the macrocyclic scaffold is characterized by a fully cooperative intramolecular H-bond network, in sharp contrast with the nanotubular assemblies observed for beta(3)-cyclotetrapeptides. This folding property reduces considerably the polarity of aza-beta(3)-tetrapeptides and should be useful in addressing intracellular targets.