Pyrazolidine-3,5-diones and 5-Hydroxy-1H-pyrazol-3(2H)-ones, Inhibitors of UDP-N-acetylenolpyruvyl Glucosamine Reductase
摘要:
A series of pyrazolidine-3,5-dione and 5-hydroxy-1H-pyrazol-3(2H)-one inhibitors of Escherichia coli UDP-N-acetylenolpyruvyl glucosamine reductase (MurB) has been prepared. The 5-hydroxy-1H-pyrazol-3(2H)ones show low micromolar IC50 values versus E. coli MurB and submicromolar minimal inhibitory concentrations ( MIC) against Staphylococcus aureus GC 1131, Enterococcus faecalis GC 2242, Streptococcus pneumoniae GC 1894, and E. coli GC 4560 imp, a strain with increased outer membrane permeability. None of these compounds show antimicrobial activity against Candida albicans, a marker of eukaryotic toxicity. Moreover, these compounds inhibit peptidoglycan biosynthesis, as assessed by measuring the amount of soluble peptidoglycan produced by Streptococcus epidermidis upon incubation with compounds. A partial least squares projection to latent structures analysis shows that improving MurB potency and MIC values correlate with increasing lipophilicity of the C-4 substituent of the 5-hydroxy-1H-pyrazol-3(2H)-one core. Docking studies using FLO and PharmDock produced several binding orientations for these molecules in the MurB active site.
Pyrazolidine-3,5-diones and 5-Hydroxy-1H-pyrazol-3(2H)-ones, Inhibitors of UDP-N-acetylenolpyruvyl Glucosamine Reductase
摘要:
A series of pyrazolidine-3,5-dione and 5-hydroxy-1H-pyrazol-3(2H)-one inhibitors of Escherichia coli UDP-N-acetylenolpyruvyl glucosamine reductase (MurB) has been prepared. The 5-hydroxy-1H-pyrazol-3(2H)ones show low micromolar IC50 values versus E. coli MurB and submicromolar minimal inhibitory concentrations ( MIC) against Staphylococcus aureus GC 1131, Enterococcus faecalis GC 2242, Streptococcus pneumoniae GC 1894, and E. coli GC 4560 imp, a strain with increased outer membrane permeability. None of these compounds show antimicrobial activity against Candida albicans, a marker of eukaryotic toxicity. Moreover, these compounds inhibit peptidoglycan biosynthesis, as assessed by measuring the amount of soluble peptidoglycan produced by Streptococcus epidermidis upon incubation with compounds. A partial least squares projection to latent structures analysis shows that improving MurB potency and MIC values correlate with increasing lipophilicity of the C-4 substituent of the 5-hydroxy-1H-pyrazol-3(2H)-one core. Docking studies using FLO and PharmDock produced several binding orientations for these molecules in the MurB active site.