摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Cyclodocecylmethacrylamide | 13675-35-9

中文名称
——
中文别名
——
英文名称
Cyclodocecylmethacrylamide
英文别名
N-Cyclododecylmethacrylamide;N-cyclododecyl-2-methylprop-2-enamide
Cyclodocecylmethacrylamide化学式
CAS
13675-35-9
化学式
C16H29NO
mdl
——
分子量
251.412
InChiKey
KCSKCZXFHXRTAV-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    5.6
  • 重原子数:
    18
  • 可旋转键数:
    2
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.81
  • 拓扑面积:
    29.1
  • 氢给体数:
    1
  • 氢受体数:
    1

反应信息

  • 作为产物:
    描述:
    环十二胺甲基丙烯酰氯三乙胺 作用下, 以 为溶剂, 反应 12.0h, 以55.2%的产率得到Cyclodocecylmethacrylamide
    参考文献:
    名称:
    Photoinduced charge separation by chromophores encapsulated in the hydrophobic compartment of amphiphilic polyelectrolytes with various aliphatic hydrocarbons
    摘要:
    Terpolymers of 50 mol % sodium 2-(acrylamido)-2-methylpropanesulfonate (AMPS), 1 mol % 1-(pyrenylmethyl)methacrylamide (PyMAm), and 49 mol % lauryl- or cyclododecyl- or adamantylmethacrylamide units were synthesized. A copolymer of 99 mol % AMPS and 1 mol % PyMAm units was also prepared as a reference polymer. Charge-transfer (CT) complexation, fluorescence quenching, and photoinduced electron transfer (ET) were studied, using methylviologen (MV2+) as an acceptor. In the terpolymers, the polymer-bound pyrene (Py) chromophores are compartmentalized in hydrophobic microdomains of a micellelike microphase structure formed by the terpolymers in aqueous solution, while the chromophores are exposed to the aqueous phase in the reference copolymer. In the compartmentalized systems, the CT complexation of Py with MV2+ was suppressed, but the fluorescence quenching was enhanced. Charge recombination (CR) of the primary ion pair generated by laser excitation was slowed by an order of magnitude as compared to that in the reference copolymer system, while very fast photoinduced forward ET occurred (within ca. 20 ps). Thus, the terpolymer systems showed charge separation that persisted for hundreds of microseconds. These findings were qualitatively interpreted in terms of sterical protection of the Py chromophore from a close contact with MV2+, although MV2+ is highly concentrated on the surface of the hydrophobic microdomain of the terpolymers. A sterically hindered primary ion pair of a looser structure with a longer lifetime may be formed in the compartmentalized systems. The lauryl group was significantly less effective in protecting Py than were the cyclododecyl and adamantyl groups. A judicious choice of the hydrophobic group is suggested to achieve an optimal compartmentalization of Py, which will lead to an optimal efficiency for charge separation.
    DOI:
    10.1021/j100168a058
点击查看最新优质反应信息

文献信息

  • GRAFT COPOLYMER, METHOD FOR PRODUCING SAME AND RESIN COMPOSITION CONTAINING SUCH GRAFT COPOLYMER
    申请人:Kaneka Corporation
    公开号:EP1832613B9
    公开(公告)日:2012-08-29
  • Graft Copolymer, Method For Producing The Same And Resin Composition Containing The Graft Copolymer
    申请人:Saegusa Kazunori
    公开号:US20080085975A1
    公开(公告)日:2008-04-10
    The present invention provides a novel graft copolymer and a resin composition that is excellent in the balance between flame retardancy and impact strength. Specifically, the present invention provides a polyorganosiloxane-containing graft copolymer comprising a polyorganosiloxane (A) segment, a polymer (C) segment having at least a unit derived from a nitrogen-atom-containing multifunctional monomer (B) having two or more radically polymerizable groups in its molecule, and a polymer (E) segment derived from an ethylenically unsaturated monomer (D) that has a glass transition temperature of 40° C. or higher, and a resin composition containing the graft copolymer.
  • Photoinduced charge separation by chromophores encapsulated in the hydrophobic compartment of amphiphilic polyelectrolytes with various aliphatic hydrocarbons
    作者:Yotaro Morishima、Yukio Tominaga、Mikiharu Kamachi、Tadashi Okada、Yoshinori Hirata、Noboru Mataga
    DOI:10.1021/j100168a058
    日期:1991.7
    Terpolymers of 50 mol % sodium 2-(acrylamido)-2-methylpropanesulfonate (AMPS), 1 mol % 1-(pyrenylmethyl)methacrylamide (PyMAm), and 49 mol % lauryl- or cyclododecyl- or adamantylmethacrylamide units were synthesized. A copolymer of 99 mol % AMPS and 1 mol % PyMAm units was also prepared as a reference polymer. Charge-transfer (CT) complexation, fluorescence quenching, and photoinduced electron transfer (ET) were studied, using methylviologen (MV2+) as an acceptor. In the terpolymers, the polymer-bound pyrene (Py) chromophores are compartmentalized in hydrophobic microdomains of a micellelike microphase structure formed by the terpolymers in aqueous solution, while the chromophores are exposed to the aqueous phase in the reference copolymer. In the compartmentalized systems, the CT complexation of Py with MV2+ was suppressed, but the fluorescence quenching was enhanced. Charge recombination (CR) of the primary ion pair generated by laser excitation was slowed by an order of magnitude as compared to that in the reference copolymer system, while very fast photoinduced forward ET occurred (within ca. 20 ps). Thus, the terpolymer systems showed charge separation that persisted for hundreds of microseconds. These findings were qualitatively interpreted in terms of sterical protection of the Py chromophore from a close contact with MV2+, although MV2+ is highly concentrated on the surface of the hydrophobic microdomain of the terpolymers. A sterically hindered primary ion pair of a looser structure with a longer lifetime may be formed in the compartmentalized systems. The lauryl group was significantly less effective in protecting Py than were the cyclododecyl and adamantyl groups. A judicious choice of the hydrophobic group is suggested to achieve an optimal compartmentalization of Py, which will lead to an optimal efficiency for charge separation.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物