摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Mannosylglucosylglycerate

中文名称
——
中文别名
——
英文名称
Mannosylglucosylglycerate
英文别名
(2R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2R,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypropanoate
Mannosylglucosylglycerate化学式
CAS
——
化学式
C15H25O14-
mdl
——
分子量
429.35
InChiKey
YYJFQOMCNVLANJ-MQZSKFSESA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -4.1
  • 重原子数:
    29
  • 可旋转键数:
    7
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.93
  • 拓扑面积:
    239
  • 氢给体数:
    8
  • 氢受体数:
    14

反应信息

  • 作为产物:
    描述:
    2-O-[alpha-D-mannopyranosyl-(1->2)-alpha-D-glucopyranosyl]-3-O-phosphonato-D-glycerate(3-) 、 生成 MannosylglucosylglycerateH3PO4
    参考文献:
    名称:
    Two Alternative Pathways for the Synthesis of the Rare Compatible Solute Mannosylglucosylglycerate inPetrotoga mobilis
    摘要:
    摘要最近在Petrotoga miotherma中发现的相容溶质甘露糖基甘油酸(MGG)也会在Petrotoga mobilis中积累,以应对高渗透条件和超理想生长温度。我们在莫比莱斯Petrotoga mobilis的基因组中发现了两个功能相关的基因,分别编码葡萄糖基-3-磷酸甘油酸合成酶(GpgS)和一个未知的糖基转移酶(基因Pmob_1143),我们将其功能定性为甘露糖基葡萄糖基-3-磷酸甘油酸合成酶,并命名为MggA。该酶利用 GpgS 的产物葡萄糖基-3-磷酸甘油酸(GPG)以及 GDP-甘露糖生成甘露糖基葡萄糖基-3-磷酸甘油酸(MGPG),即 MGG 的磷酸化前体。在细胞提取物中测定了 MGPG 的去磷酸化过程,并对原生酶进行了部分纯化和鉴定。令人惊奇的是,在 mobilis 蛋白基因组中还发现了一个编码推测的葡萄糖基甘油酸合成酶(Ggs)的基因,并且在细胞提取物中检测到了能够从 ADP-葡萄糖和甘油酸中产生葡萄糖基甘油酸(GG)的活性 Ggs,重组酶也得到了表征。由于 GG 从未在该生物体内被发现,也不是 MggA 的底物,我们预计 MGG 的合成存在非磷酸化途径。我们初步确定了相应的基因,其产物与 MggA 有一定的序列同源性,但无法从 mobilis 蛋白中重组表达功能酶,我们将其命名为甘露糖基甘油酸合成酶(MggS)。反过来,我们成功地表达了来自海洋褐藻(Thermotoga maritimaw)的同源基因,并证实了 MGG 是由 GDP-甘露糖和 GG 合成的。根据对细胞提取物中相关酶活性的测定和关键酶的功能表征,我们提出了在 Ptg. mobilis 中合成稀有相容溶质 MGG 的两种替代途径。
    DOI:
    10.1128/jb.01424-09
点击查看最新优质反应信息

文献信息

  • Mycobacterium tuberculosis Rv2419c, the missing glucosyl-3-phosphoglycerate phosphatase for the second step in methylglucose lipopolysaccharide biosynthesis
    作者:Vítor Mendes、Ana Maranha、Susana Alarico、Milton S. da Costa、Nuno Empadinhas
    DOI:10.1038/srep00177
    日期:——
    Mycobacteria synthesize intracellular methylglucose lipopolysaccharides (MGLP) proposed to regulate fatty acid synthesis. Although their structures have been elucidated, the identity of most biosynthetic genes remains unknown. The first step in MGLP biosynthesis is catalyzed by a glucosyl-3-phosphoglycerate synthase (GpgS, Rv1208 in Mycobacterium tuberculosis H37Rv). However, a typical glucosyl-3-phosphoglycerate phosphatase (GpgP, EC3.1.3.70) for dephosphorylation of glucosyl-3-phosphoglycerate to glucosylglycerate, was absent from mycobacterial genomes. We purified the native GpgP from Mycobacterium vanbaalenii and identified the corresponding gene deduced from amino acid sequences by mass spectrometry. The M. tuberculosis ortholog (Rv2419c), annotated as a putative phosphoglycerate mutase (PGM, EC5.4.2.1), was expressed and functionally characterized as a new GpgP. Regardless of the high specificity for glucosyl-3-phosphoglycerate, the mycobacterial GpgP is not a sequence homolog of known isofunctional GpgPs. The assignment of a new function in M. tuberculosis genome expands our understanding of this organism's genetic repertoire and of the early events in MGLP biosynthesis.
    分枝杆菌在细胞内合成甲基葡萄糖脂多糖(MGLP),用于调节脂肪酸的合成。虽然它们的结构已被阐明,但大多数生物合成基因的身份仍然未知。MGLP 生物合成的第一步由葡萄糖基-3-磷酸甘油酸合成酶(GpgS,结核分枝杆菌 H37Rv 中的 Rv1208)催化。然而,结核分枝杆菌基因组中并不存在典型的葡萄糖基-3-磷酸甘油酯磷酸酶(GpgP,EC3.1.3.70),它能将葡萄糖基-3-磷酸甘油酯去磷酸化为葡萄糖基甘油酯。我们从范氏分枝杆菌(Mycobacterium vanbaalenii)中纯化出了原生的 GpgP,并通过质谱鉴定了从氨基酸序列推导出的相应基因。结核分枝杆菌的直向同源物(Rv2419c)被注释为一种推定的磷酸甘油酸突变酶(PGM,EC5.4.2.1),它作为一种新的 GpgP 得到了表达和功能表征。尽管该分枝杆菌 GpgP 对葡萄糖基-3-磷酸甘油酸具有高度特异性,但它与已知的同功能 GpgP 并不是同源序列。结核杆菌基因组中新功能的确定,拓展了我们对该生物基因库和 MGLP 生物合成早期事件的了解。
  • Two Alternative Pathways for the Synthesis of the Rare Compatible Solute Mannosylglucosylglycerate in<i>Petrotoga mobilis</i>
    作者:Chantal Fernandes、Vitor Mendes、Joana Costa、Nuno Empadinhas、Carla Jorge、Pedro Lamosa、Helena Santos、Milton S. da Costa
    DOI:10.1128/jb.01424-09
    日期:2010.3.15
    ABSTRACT

    The compatible solute mannosylglucosylglycerate (MGG), recently identified inPetrotoga miotherma, also accumulates inPetrotoga mobilisin response to hyperosmotic conditions and supraoptimal growth temperatures. Two functionally connected genes encoding a glucosyl-3-phosphoglycerate synthase (GpgS) and an unknown glycosyltransferase (gene Pmob_1143), which we functionally characterized as a mannosylglucosyl-3-phosphoglycerate synthase and designated MggA, were identified in the genome ofPtg. mobilis. This enzyme used the product of GpgS, glucosyl-3-phosphoglycerate (GPG), as well as GDP-mannose to produce mannosylglucosyl-3-phosphoglycerate (MGPG), the phosphorylated precursor of MGG. The MGPG dephosphorylation was determined in cell extracts, and the native enzyme was partially purified and characterized. Surprisingly, a gene encoding a putative glucosylglycerate synthase (Ggs) was also identified in the genome ofPtg. mobilis, and an active Ggs capable of producing glucosylglycerate (GG) from ADP-glucose andd-glycerate was detected in cell extracts and the recombinant enzyme was characterized, as well. Since GG has never been identified in this organism nor was it a substrate for the MggA, we anticipated the existence of a nonphosphorylating pathway for MGG synthesis. We putatively identified the corresponding gene, whose product had some sequence homology with MggA, but it was not possible to recombinantly express a functional enzyme fromPtg. mobilis, which we named mannosylglucosylglycerate synthase (MggS). In turn, a homologous gene fromThermotoga maritimawas successfully expressed, and the synthesis of MGG was confirmed from GDP-mannose and GG. Based on the measurements of the relevant enzyme activities in cell extracts and on the functional characterization of the key enzymes, we propose two alternative pathways for the synthesis of the rare compatible solute MGG inPtg. mobilis.

    摘要最近在Petrotoga miotherma中发现的相容溶质甘露糖基甘油酸(MGG)也会在Petrotoga mobilis中积累,以应对高渗透条件和超理想生长温度。我们在莫比莱斯Petrotoga mobilis的基因组中发现了两个功能相关的基因,分别编码葡萄糖基-3-磷酸甘油酸合成酶(GpgS)和一个未知的糖基转移酶(基因Pmob_1143),我们将其功能定性为甘露糖基葡萄糖基-3-磷酸甘油酸合成酶,并命名为MggA。该酶利用 GpgS 的产物葡萄糖基-3-磷酸甘油酸(GPG)以及 GDP-甘露糖生成甘露糖基葡萄糖基-3-磷酸甘油酸(MGPG),即 MGG 的磷酸化前体。在细胞提取物中测定了 MGPG 的去磷酸化过程,并对原生酶进行了部分纯化和鉴定。令人惊奇的是,在 mobilis 蛋白基因组中还发现了一个编码推测的葡萄糖基甘油酸合成酶(Ggs)的基因,并且在细胞提取物中检测到了能够从 ADP-葡萄糖和甘油酸中产生葡萄糖基甘油酸(GG)的活性 Ggs,重组酶也得到了表征。由于 GG 从未在该生物体内被发现,也不是 MggA 的底物,我们预计 MGG 的合成存在非磷酸化途径。我们初步确定了相应的基因,其产物与 MggA 有一定的序列同源性,但无法从 mobilis 蛋白中重组表达功能酶,我们将其命名为甘露糖基甘油酸合成酶(MggS)。反过来,我们成功地表达了来自海洋褐藻(Thermotoga maritimaw)的同源基因,并证实了 MGG 是由 GDP-甘露糖和 GG 合成的。根据对细胞提取物中相关酶活性的测定和关键酶的功能表征,我们提出了在 Ptg. mobilis 中合成稀有相容溶质 MGG 的两种替代途径。
查看更多