中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
—— | 9,10-dibromo-2-nitro-9,10-dihydro-9,10-ethanoanthracene | 165054-03-5 | C16H11Br2NO2 | 409.077 |
Mononitration of 9-substituted ethanoanthracenes, bearing Me, But, F, Br, I, OMe , NO2, CN, CHO or CO2Me substituents at the bridgehead carbon, was found to occur exclusively at the β-positions of the aromatic ring. The mononitro products were isolated, identified by 1H n.m.r. spectroscopy, and their relative proportions were estimated by quantitative g.l.c . and/or by 1H n.m.r. spectroscopy. For all the above substrates the proportion of nitration at the β-position meta to the bridgehead carbon bearing the substituent [to give compounds of the general form (4)] was greater than the proportion of nitration at the corresponding β-position para to the bridgehead substituent [to give compounds of the general form (3)]. Whilst the preferential nitration at the β-positions of the aromatic rings is consistent with the previously reported nitration of 9,10-dihydro-9,10-ethanoanthracene (2a) itself, no observations of this preferential meta attack have been made previously. No correlation could be made of this behaviour with available substituent parameters for the widely sterically and electronically disparate set of substituents used in this study, and the origin of this preferential attack remains unclear. Dinitration in this system was studied only superficially. The influence of the bridgehead substituent together with that of the nitro group already present on one aromatic ring appear to combine with quite unpredictable results in orienting the position of attack of the incoming nitro group onto the other (non-nitrated) aromatic ring.
The reactions of 1-bromo-7-nitro- and 1-bromo-6-nitro-1,4-methanonaphthalene (2) and (3), and 9-bromo-2-nitro, 10-bromo-2-nitro-, 9,10-dibromo-2-nitro- and 9,10-diiodo-2-nitro-9,10-ethano-9,10-dihydroanthracene (4)-(7). respectively, with the sodium salt (1) of p-toluenethiol gave substitution products that were shown to be formed by an SRN1 or a related radical chain mechanism. In the relatively slow substitution reactions of the salt (1) with compounds (2)-(5). That contain bromine at bridgehead positions that are either meta- or para-benzylic to an aromatic nitro group, the rates of substitution in the isomers where the leaving group was meta- benzylic to the aromatic nitro group were slightly greater than those for the corresponding para-benzylic isomer. In compounds (6)and (7) the halogens are at bridgehead positions that are either meta- or para-benzylic relative to an aromatic nitro group within the same molecule. In the case of the reaction of the dibromide (6) with the thiolate (1), substitution was slow and occurred more rapidly at the benzylic -bridgehead position meta to the nitro group than at the corresponding para-benzylic position. In contast , the reaction of the diiodide (7) with the thiolate (1) gave substitution products which formed more rapidly than in the corresponding reaction of the dibromide (6) and the regioselectivity was reversed, with substitution occurring more readily at the bridgehead position para-benzylic to the nitro group than at the corresponding meta- benzylic position. The ratio of meta to para substitution products, determined for the reactions of compounds (2)-(6) with the salt (1), were in the range 1.15-2.5:1, while the reaction of (7) with the same nucleophile afforded a meta-to-para ratio of 1:2:3. These ratios contrast not only with each other, but also with the differences in reactivities determined for other nitrobenzylic systems, which are known to undergo SRN1 substitution reactions with the same nucleophile. The differences in first, the regioselectivity of substitution between the bridgehead systems, and secondly, the differences in the observed rates of regioselective substitution are compared with other simple nitrobenzylic halides. These differences are rationalized in terms of the effect of fixing the C-X bond at a bridgehead position to be orthogonal with the plane of the nitroaromatic group; this results in a reduction of the rate constants of intramolecular electron transfer, with significant consequences on the detailed overall mechanism for these reactions.