High-performance cation exchange chromatography coupled to tandem mass spectrometry or electrochemical detection was found to be an efficient tool for analyzing Amadori compounds derived from hexose and pentose sugars. The method allows rapid separation and identification of Amadori compounds, while benefiting from the well-known advantages of mass spectrometry, such as specificity and sensitivity. Glucose- and xylose-derived Amadori compounds of several amino acids, such as glycine, alanine, valine, leucine/isoleucine, methionine, proline, phenylalanine, and glutamic acid, were separated or discriminated using this new method. The method is suitable for the analysis of both model reaction mixtures and food products. Fructosylglutamate was found to be the major Amadori compound in dried tomatoes (∼1.5 g/100 g) and fructosylproline in dried apricots (∼0.2 g/100 g). Reaction of xylose and glycine at 90 °C (pH 6) for 2 h showed rapid formation of xylulosylglycine (∼12 mol %, 15 min) followed by slow decrease over time. Analysis of pentose-derived Amadori compounds is shown for the first time, which represents a major breakthrough in studying occurrence, formation, and decomposition of these labile Maillard intermediates.
This invention provides a cooked flavorant product which is adapted for incorporation into smoking compositions. The flavorant is the condensation product of single cell, especially yeast, protein hydrolysate and a reducing sugar, optionally with the inclusion of an aldehyde. The reaction is preferably carried out in an alkaline medium, for example pH 7.5-10, at 70-150°C for 0.2-5 hours.