Chemoproteomics-enabled covalent ligand screen reveals a cysteine hotspot in reticulon 4 that impairs ER morphology and cancer pathogenicity
作者:L. A. Bateman、T. B. Nguyen、A. M. Roberts、D. K. Miyamoto、W.-M. Ku、T. R. Huffman、Y. Petri、M. J. Heslin、C. M. Contreras、C. F. Skibola、J. A. Olzmann、D. K. Nomura
DOI:10.1039/c7cc01480e
日期:——
thus put forth RTN4 as a potential novel colorectal cancer therapeutic target and reveal a unique druggable hotspot within RTN4 that can be targeted by covalent ligands to impair colorectal cancer pathogenicity. Our results underscore the utility of coupling the screening of fragment-based covalent ligands with isoTOP-ABPP platforms for mining the proteome for novel druggable nodes that can be targeted
[EN] FORCE-RESPONSIVE POLYMERSOMES AND NANOREACTORS; PROCESSES UTILIZING THE SAME<br/>[FR] POLYMERSOMES ET NANORÉACTEURS SENSIBLES À LA FORCE; PROCÉDÉS LES UTILISANT
申请人:ADOLPHE MERKLE INSTITUTE UNIV OF FRIBOURG
公开号:WO2019034597A1
公开(公告)日:2019-02-21
The mechanically induced melting properties of DNA were employed to achieve force labile membranes is described. Nucleobase pairs were used as mechanophores. Adenine and thymine functionalized complementary amphiphilic block copolymers were self-assembled into polymersomes. The nucleobases formed hydrogen bonds which were disrupted upon force stimulation. The exposure of the disconnected nucleobases to the hydrophobic matrix of the membranes lead to a change of permeability which permitted the exchange of water-soluble molecules throughout the polymer matrix. Moreover, the encapsulation of horseradish peroxidase enabled the reaction of luminol with hydrogen peroxide to yield a luminescence producing species similar to the marine bioluminescence. Moreover, the same nano-reactors were employed to catalyze the formation of a polyacrylamide gel when force was applied. Insights into the change of permeability of supramolecular networks upon force are provided. These systems are useful for drug delivery, as nanoreactors and for the selective release of curing agents for 3D printing, or fragrances.