摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

trans-aconitate | 14264-45-0

中文名称
——
中文别名
——
英文名称
trans-aconitate
英文别名
(E)-prop-1-ene-1,2,3-tricarboxylate
trans-aconitate化学式
CAS
14264-45-0
化学式
C6H3O6
mdl
——
分子量
171.086
InChiKey
GTZCVFVGUGFEME-HNQUOIGGSA-K
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1
  • 重原子数:
    12
  • 可旋转键数:
    1
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.17
  • 拓扑面积:
    120
  • 氢给体数:
    0
  • 氢受体数:
    6

反应信息

  • 作为反应物:
    描述:
    trans-aconitate 生成 cis-aconitate
    参考文献:
    名称:
    乌头酸异构酶(Pseudomonas sp。)的乌头酸异构酶的酶学表征和基因鉴定,乌头酸异构酶是反式乌头酸的同化酶。WU‐0701
    摘要:
    反式乌头酸是一种不饱和有机酸,存在于某些植物中,例如大豆和小麦。然而,目前尚不清楚自然界中的活细胞如何降解和/或吸收反乌头酸。从土壤中,我们分离了假单胞菌。WU‐0701吸收了反乌头酸作为唯一的碳源。在假单胞菌无细胞提取物中。检测到乌头酸异构酶(AI; EC 5.3.3.7)WU-0701。因此,似乎假单胞菌属菌株。WU-0701用AI将反乌头酸转化为顺乌头酸,并通过三羧酸循环将其同化。用于表征AI假单胞菌属。WU‐0701,我们进行了AI的纯化,酶学性质测定和基因鉴定。通过SDS / PAGE和凝胶过滤分析,从无细胞提取物中纯化得到的AI的分子量估计约为25 kDa,表明AI是一种单体酶。该反应的纯化AI的最佳pH和温度分别为6.0°C和37°C。根据该蛋白质的N末端氨基酸序列克隆了编码AI的基因ais,Southern印迹分析表明,细菌基因组上只有ais的一个拷贝。基因AIS包含一个786
    DOI:
    10.1111/febs.13494
点击查看最新优质反应信息

文献信息

  • Distinct Reactions Catalyzed by Bacterial and Yeast <i>trans</i>-Aconitate Methyltransferases
    作者:Hui Cai、Jane Strouse、Darren Dumlao、Michael E. Jung、Steven Clarke
    DOI:10.1021/bi0022902
    日期:2001.2.1
    The trans-aconitate methyltransferase from the bacterium Escherichia coli catalyzes the monomethyl esterification of trans-aconitate and related compounds. Using two-dimensional (1)H/(13)C nuclear magnetic resonance spectroscopy, we show that the methylation is specific to one of the three carboxyl groups and further demonstrate that the product is the 6-methyl ester of trans-aconitate (E-3-carboxy-2-pentenedioate
    来自细菌大肠杆菌的反式-氨基甲酸酯甲基转移酶催化反式-α-氨基甲酸酯和相关化合物的单甲基酯化。使用二维(1)H /(13)C核磁共振波谱,我们显示甲基化特定于三个羧基之一,并且进一步证明了该产物是反式aco酸酯的6甲酯(E -3-羧基-2-戊二烯酸酯(6-甲酯)。酿酒酵母中存在类似的酶活性。尽管我们发现酵母反式-香气酸甲基转移酶也催化反式-香气酸的单甲基酯化,但我们发现酵母的甲基化产物是5-甲酯(E-3-羧基-2-戊二烯酸酯化的5-甲酯)。两种酶催化反应的差异可能解释了为什么在酵母基因组中未发现大肠杆菌甲基转移酶基因的紧密同源性,并且进一步表明这两种酶可能起着不同的作用。但是,我们在这里证明了反式转化为每个这些产物都可以减轻其对乌头酸酶柠檬酸循环的关键酶)的抑制作用,这表明这些甲基转移酶可以通过不同的化学作用实现相同的生理功能。
  • 3-Isopropylmalate Is the Major Endogenous Substrate of the <i>Saccharomyces cerevisiae trans</i>-Aconitate Methyltransferase
    作者:Jonathan E. Katz、Darren S. Dumlao、Jacob I. Wasserman、Michael G. Lansdown、Michael E. Jung、Kym F. Faull、Steven Clarke
    DOI:10.1021/bi049784+
    日期:2004.5.25
    biosynthetic pathway that shares similar intermediates and reaction chemistry with the portion of the citric acid cycle from oxaloacetate to alpha-ketoglutarate via cis-aconitate. The Tmt1 methyltransferase recognizes (2R,3S)-3-isopropylmalate with similar kinetics as it does trans-aconitate, with respective K(m) values of 127 and 53 microM and V(max) values of 59 and 70 nmol min(-1) mg(-1) of protein in a
    酿酒酵母Tmt1基因产物是大肠杆菌酶的酵母同源物,可催化反式-aconitate的甲基酯化反应,顺式-aconitate的热力学异构体和柠檬酸循环的抑制剂。已经提出,甲基化可以减弱顺乌头酸酶和该循环中其他酶的反式-花生酸酯抑制作用。尽管反式-aconitate是酿酒酵母提取物中Tmt1酶的次要内源底物,但主要内源底物尚未确定。我们在这里表明,酵母提取物中Tmt1的主要甲基化内源性产物的三甲基甲硅烷基化衍生物具有与(2R,3S)-3-两种可能的单甲酯衍生物之一相同的气相色谱保留时间和相同的电子冲击质谱苹果酸丙酯。(2R,3S)-3-苹果酸异丙基酯是亮生物合成途径的中间体,与柠檬酸循环从草酰乙酸到顺式aco酸酯的α-酮戊二酸柠檬酸循环部分具有相似的中间体和反应化学。Tmt1甲基转移酶识别(2R,3S)-3-异丙基苹果酸,其动力学与反甲酸酯相似,各自的K(m)值为127和53 microM,V(max)值为59和70
  • A Novel Methyltransferase Catalyzes the Methyl Esterification of trans-Aconitate in Escherichia coli
    作者:Hui Cai、Steven Clarke
    DOI:10.1074/jbc.274.19.13470
    日期:1999.5
    We have identified a new type of S-adenosyl-L-methionine-dependent methyltransferase in the cytosol of Escherichia coli that is expressed in early stationary phase under the control of the RpoS a factor. This enzyme catalyzes the monomethyl esterification of trans-aconitate at high affinity (K-m = 0.32 mat) and cis-aconitate, isocitrate, and citrate at lower velocities and affinities. We have purified the enzyme to homogeneity by gel-filtration, anion-exchange, and hydrophobic chromatography, The N-terminal amino acid sequence was found to match that expected for the o252 open reading frame at 34.57 min on the E. coli genomic sequence whose deduced amino acid sequence contains the signature sequence motifs of the major class of S-adenosyl-L-methionine-dependent methyltransferases, Overexpression of the o252 gene resulted in an overexpression of the methyltransferase activity, and we have now designated it tom for trans-aconitate methyltransferase. We have generated a knock-out strain off. coli lacking this activity, and we find that its growth and stationary phase survival are similar to that of the parent strain. We demonstrate the endogenous formation of trans-aconitate methyl ester in extracts of wild type but not tam(-) mutant cells indicating that trans-aconitate is present in E. coli, Since trans-aconitate does not appear to be a metabolic intermediate in these cells but forms spontaneously from the key citric acid cycle intermediate cis-aconitate, we suggest that its methylation may limit its potential interference in normal metabolic pathways. We have detected trans-aconitate methyltransferase activity in extracts of the yeast Saccharomyces cerevisiae, whereas no activity has been found in extracts of Caenorhabditis elegans or mouse brain.
  • Identification of the Gene and Characterization of the Activity of the <i>trans</i>-Aconitate Methyltransferase from <i>Saccharomyces cerevisiae</i>
    作者:Hui Cai、Darren Dumlao、Jonathan E. Katz、Steven Clarke
    DOI:10.1021/bi011380j
    日期:2001.11.1
    We have identified the yeast open reading frame YER175c as the gene encoding the trans-aconitate methyltransferase of Saccharomyces cerevisiae. Extracts of a yeast strain with a disrupted YER175c gene demonstrate a complete loss of activity toward the methyl-accepting substrates trans-aconitate, cis-aconitate, DL-isocitrate, and citrate. Reintroduction of the YER175c gene on a plasmid results in an overexpression of the activity toward each of these methyl-accepting substrates. We now designate this gene TMT1 for trans-aconitate methyltransferase. We examined the methyl-accepting substrate specificity of this enzyme in extracts from overproducing cells. We found that trans-aconitate was the best substrate with a K-m of 0.66 nM. Other substrates were recognized much more poorly, including cis-aconitate with a K-m of 74 mM and the decarboxylation product itaconate with a K-m of 44 mm. The ratio of the maximal velocity to the Km of these substrates was only 0.24% and 0.9% that of traps-aconitate; for other substrates including citrate and other tricarboxylate and dicarboxylate derivatives, this ratio ranged from 0.0003% to 0.062% that of traps-aconitate. We then asked if any of these compounds were present endogenously in yeast extracts. We were able to identify traps-aconitate 5-methyl ester as well as additional unidentified radiolabeled products when S-adenosyl-L-[methyl-H-3]methionine was mixed with TMT1(+) extracts (but not with tmtl(-) extracts), suggesting that there may be additional substrates for this enzyme. We showed that the product 5-methyl ester of traps-aconitate is not readily metabolized in yeast extracts. Finally, we demonstrated that the activity of the yeast traps-aconitate methyltransferase is localized in the cytosol and increases markedly as cells undergo the metabolic transition at the diauxic shift.
  • Purification and kinetic properties of aconitate isomerase from Pseudomonas putida
    作者:Judith P. Klinman、Irwin A. Rose
    DOI:10.1021/bi00788a011
    日期:1971.6.8
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸