Bicyclic and tricyclic thiophenes as protein tyrosine phosphatase 1B inhibitors
摘要:
A novel pyridothiophene inhibitor of PTP1B was discovered by rational screening of phosphotyrosine mimics at high micromolar concentrations. The potency of this lead compound has been improved significantly by medicinal chemistry guided by X-ray crystallography and molecular modeling. Excellent consistency has been observed between structure-activity relationships and structural information from PTP1B-inhibitor complexes.
Protein tyrosine phosphatases (PTPases) such as PTP1B can play a role in regulating a wide variety of cellular responses such as insulin signaling. Substituted bicyclic fused-thiophene compounds can inhibit PTP1B and thereby induce greater insulin sensitivity. Accordingly, PTP1B inhibition can provide an alternate treatment for PTPase-mediated disorders such as diabetes.
Protein tyrosine phosphatases (PTPases) such as PTP1B can play a role in regulating a wide variety of cellular responses such as insulin signaling. Substituted bicyclic fused-thiophene compounds can inhibit PTP1B and thereby induce greater insulin sensitivity. Accordingly, PTP1B inhibition can provide an alternate treatment for PTPase-mediated disorders such as diabetes.
[EN] INHIBITORS OF PROTEIN TYROSINE PHOSPHATASE 1B<br/>[FR] INHIBITEURS DE LA PROTEINE TYROSINE PHOSPHATASE 1B
申请人:WYETH CORP
公开号:WO2005081960A2
公开(公告)日:2005-09-09
Protein tyrosine phosphatases (PTPases) such as PTP1B can play a role in regulating a wide variety of cellular responses such as insulin signaling. Substituted bicyclic fused-thiophene compounds can inhibit PTP1B and thereby induce greater insulin sensitivity. Accordingly, PTP1B inhibition can provide an alternate treatment for PTPase-mediated disorders such as diabetes.
Bicyclic and tricyclic thiophenes as protein tyrosine phosphatase 1B inhibitors
A novel pyridothiophene inhibitor of PTP1B was discovered by rational screening of phosphotyrosine mimics at high micromolar concentrations. The potency of this lead compound has been improved significantly by medicinal chemistry guided by X-ray crystallography and molecular modeling. Excellent consistency has been observed between structure-activity relationships and structural information from PTP1B-inhibitor complexes.