A small molecule inhibitor selective for a variant ATP-binding site of the chaperonin GroEL
摘要:
The chaperonin GroEL is a megadalton-sized molecular machine that plays an essential role in the bacterial cell assisting protein folding to the native state through actions requiring ATP binding and hydrolysis. A combination of medicinal chemistry and genetics has been employed to generate an orthogonal pair, a small molecule that selectively inhibits ATPase activity of a GroEL ATP-binding pocket variant. An initial screen of kinase-directed inhibitors identified an active pyrazolo-pyrimidine scaffold that was iteratively modified and screened against a collective of GroEL nucleotide pocket variants to identify a cyclopentyl carboxamide derivative, EC3016, that specifically inhibits ATPase activity and protein folding by the GroEL mutant, I493C, involving a side chain positioned near the base of ATP. This orthogonal pair will enable in vitro studies of the action of ATP in triggering activation of GroEL-mediated protein folding and might enable further studies of GroEL action in vivo. The approach originated for studying kinases by Shokat and his colleagues may thus also be used to study large macromolecular machines. (C) 2008 Elsevier Ltd. All rights reserved.
A small molecule inhibitor selective for a variant ATP-binding site of the chaperonin GroEL
摘要:
The chaperonin GroEL is a megadalton-sized molecular machine that plays an essential role in the bacterial cell assisting protein folding to the native state through actions requiring ATP binding and hydrolysis. A combination of medicinal chemistry and genetics has been employed to generate an orthogonal pair, a small molecule that selectively inhibits ATPase activity of a GroEL ATP-binding pocket variant. An initial screen of kinase-directed inhibitors identified an active pyrazolo-pyrimidine scaffold that was iteratively modified and screened against a collective of GroEL nucleotide pocket variants to identify a cyclopentyl carboxamide derivative, EC3016, that specifically inhibits ATPase activity and protein folding by the GroEL mutant, I493C, involving a side chain positioned near the base of ATP. This orthogonal pair will enable in vitro studies of the action of ATP in triggering activation of GroEL-mediated protein folding and might enable further studies of GroEL action in vivo. The approach originated for studying kinases by Shokat and his colleagues may thus also be used to study large macromolecular machines. (C) 2008 Elsevier Ltd. All rights reserved.
Provided herein are fused ring heteroaryl compounds useful in a variety of methods, including reducing the activity of certain kinases and treating certain disease states.
本文提供了融合环杂芳基化合物,可用于多种方法,包括降低某些激酶的活性和治疗某些疾病状态。
MODULATION OF PROTEIN TRAFFICKING
申请人:Bulawa Christine Ellen
公开号:US20100331297A1
公开(公告)日:2010-12-30
Compounds and compositions are provided for treatment or amelioration of one or more disorders characterized by defects in protein trafficking. A method of treating a disorder characterized by impaired protein trafficking includes administering to a subject or contacting a cell with a compound of Formula I: [formula here] or pharmaceutically acceptable salts or derivatives thereof.
A small molecule inhibitor selective for a variant ATP-binding site of the chaperonin GroEL
作者:Eli Chapman、George W. Farr、Krystyna Furtak、Arthur L. Horwich
DOI:10.1016/j.bmcl.2008.12.015
日期:2009.2
The chaperonin GroEL is a megadalton-sized molecular machine that plays an essential role in the bacterial cell assisting protein folding to the native state through actions requiring ATP binding and hydrolysis. A combination of medicinal chemistry and genetics has been employed to generate an orthogonal pair, a small molecule that selectively inhibits ATPase activity of a GroEL ATP-binding pocket variant. An initial screen of kinase-directed inhibitors identified an active pyrazolo-pyrimidine scaffold that was iteratively modified and screened against a collective of GroEL nucleotide pocket variants to identify a cyclopentyl carboxamide derivative, EC3016, that specifically inhibits ATPase activity and protein folding by the GroEL mutant, I493C, involving a side chain positioned near the base of ATP. This orthogonal pair will enable in vitro studies of the action of ATP in triggering activation of GroEL-mediated protein folding and might enable further studies of GroEL action in vivo. The approach originated for studying kinases by Shokat and his colleagues may thus also be used to study large macromolecular machines. (C) 2008 Elsevier Ltd. All rights reserved.